Shailendra K Saxena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1032047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raman Spectroscopy as a Simple yet Effective Analytical Tool for Determining Fermi Energy and Temperature Dependent Fermi Shift in Silicon. Analytical Chemistry, 2022, 94, 1510-1514.	6.5	21
2	Raman Spectromicroscopy: A Tool to "See―Subtle Aspects in Science, Technology, and Engineering. Journal of Physical Chemistry C, 2022, 126, 4733-4743.	3.1	15
3	Evaluation of Carbon Based Molecular Junctions as Practical Photosensors. ACS Sensors, 2021, 6, 513-522.	7.8	11
4	Photostimulated Near-Resonant Charge Transport over 60 nm in Carbon-Based Molecular Junctions. Journal of the American Chemical Society, 2020, 142, 15420-15430.	13.7	15
5	Comment on "Extent of conjugation in diazonium-derived layers in molecular junction devices determined by experiment and modelling―by C. Van Dyck, A. J. Bergren, V. Mukundan, J. A. Fereiro and G. A. DiLabio, Phys. Chem. Chem. Phys., 2019, 21, 16762. Physical Chemistry Chemical Physics, 2020, 22, 21543-21546	2.8	1
6	Ion-Assisted Resonant Injection and Charge Storage in Carbon-Based Molecular Junctions. Journal of the American Chemical Society, 2020, 142, 11658-11662.	13.7	19
7	Mapping Longitudinal Inhomogeneity in Nanostructures Using Cross-Sectional Spatial Raman Imaging. Journal of Physical Chemistry C, 2020, 124, 6467-6471.	3.1	25
8	Unintended Deviation of Fermi Level from Band Edge in Fractal Silicon Nanostructures: Consequence of Dopants' Zonal Depletion. Journal of Physical Chemistry C, 2020, 124, 16675-16679.	3.1	19
9	Light‣timulated Charge Transport in Bilayer Molecular Junctions for Photodetection. Advanced Optical Materials, 2019, 7, 1901053.	7.3	20
10	Unipolar Injection and Bipolar Transport in Electroluminescent Ru-Centered Molecular Electronic Junctions. Journal of Physical Chemistry C, 2019, 123, 29162-29172.	3.1	10
11	Deconvoluting Diffuse Reflectance Spectra for Retrieving Nanostructures' Size Details: An Easy and Efficient Approach. Journal of Physical Chemistry A, 2019, 123, 3607-3614.	2.5	13
12	Precursor concentration dependent hydrothermal NiO nanopetals: Tuning morphology for efficient applications. Superlattices and Microstructures, 2019, 125, 138-143.	3.1	26
13	Structural and optical properties of polyaniline-green silver nanocomposite. Advances in Materials and Processing Technologies, 2019, 5, 172-180.	1.4	2
14	Understanding perceived color through gradual spectroscopic variations in electrochromism. Indian Journal of Physics, 2019, 93, 927-933.	1.8	14
15	Polypyrrole–vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
16	Generalisation of phonon confinement model for interpretation of Raman line-shape from nano-silicon. Advances in Materials and Processing Technologies, 2018, 4, 227-233.	1.4	6
17	Spectroscopic Evidence of Phosphorous Heterocycle–DNA Interaction and its Verification by Docking Approach. Journal of Fluorescence, 2018, 28, 373-380.	2.5	5
18	Porous Silicon's fractal nature revisited. Superlattices and Microstructures, 2018, 120, 141-147.	3.1	14

SHAILENDRA K SAXENA

#	Article	IF	CITATIONS
19	Tent-Shaped Surface Morphologies of Silicon: Texturization by Metal Induced Etching. Silicon, 2018, 10, 2801-2807.	3.3	8
20	Quantifying the Short-Range Order in Amorphous Silicon by Raman Scattering. Analytical Chemistry, 2018, 90, 8123-8129.	6.5	47
21	Study of Porous Silicon Prepared Using Metal-Induced Etching (MIE): a Comparison with Laser-Induced Etching (LIE). Silicon, 2017, 9, 483-488.	3.3	30
22	Interfacial redox centers as origin of color switching in organic electrochromic device. Optical Materials, 2017, 66, 65-71.	3.6	45
23	Spectral Anomaly in Raman Scattering from p-Type Silicon Nanowires. Journal of Physical Chemistry C, 2017, 121, 5372-5378.	3.1	39
24	An insight of spirooxindole-annulated thiopyran – DNA interaction: spectroscopic and docking approach of these biological materials. Advances in Materials and Processing Technologies, 2017, 3, 339-352.	1.4	1
25	Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications. Journal of Molecular Structure, 2017, 1139, 447-454.	3.6	7
26	Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. Journal of Materials Chemistry C, 2017, 5, 9611-9618.	5.5	28
27	Synthesis of Conducting Polypyrrole-Titanium Oxide Nanocomposite: Study of Structural, Optical and Electrical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 257-263.	3.7	26
28	Importance of frequency dependent magnetoresistance measurements in analysing the intrinsicality of magnetodielectric effect: A case study. Journal of Applied Physics, 2017, 122, .	2.5	8
29	Strain control of Urbach energy in Cr-doped PrFeO3. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	53
30	Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: An experimental and theoretical investigation. Journal of Applied Physics, 2017, 122, .	2.5	95
31	Fast electrochromic display: tetrathiafulvalene–graphene nanoflake as facilitating materials. Journal of Materials Chemistry C, 2017, 5, 9504-9512.	5.5	55
32	Ecofriendly gold nanoparticles – Lysozyme interaction: Thermodynamical perspectives. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 284-290.	3.8	22
33	Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes. Physical Chemistry Chemical Physics, 2017, 19, 31788-31795.	2.8	36
34	Construction of well aligned highly dense Cobalt nanoneedles for efficient device application. Advances in Materials and Processing Technologies, 2017, 3, 627-631.	1.4	2
35	Effect of Mn doping on dielectric response and optical band gap of LaGaO ₃ . Advances in Materials and Processing Technologies, 2017, 3, 539-549.	1.4	3
36	Probing structural distortions in rare earth chromites using Indian synchrotron radiation source. Indian Journal of Physics, 2016, 90, 1347-1354.	1.8	16

SHAILENDRA K SAXENA

#	Article	IF	CITATIONS
37	Fano Scattering: Manifestation of Acoustic Phonons at the Nanoscale. Journal of Physical Chemistry Letters, 2016, 7, 5291-5296.	4.6	53
38	Observation of room temperature magnetodielectric effect in Mn-doped lanthanum gallate and study of its magnetic properties. Journal of Materials Chemistry C, 2016, 4, 10876-10886.	5.5	17
39	Raman spectroscopy for study of interplay between phonon confinement and Fano effect in silicon nanowires. Journal of Raman Spectroscopy, 2016, 47, 283-288.	2.5	43
40	Role of metal nanoparticles on porosification of silicon by metal induced etching (MIE). Superlattices and Microstructures, 2016, 94, 101-107.	3.1	22
41	Observation of large dielectric permittivity and dielectric relaxation phenomenon in Mn-doped lanthanum gallate. RSC Advances, 2016, 6, 26621-26629.	3.6	30
42	Possibility of spin-polarized transport in edge fluorinated armchair boron nitride nanoribbons. RSC Advances, 2016, 6, 11014-11022.	3.6	17
43	Interplay between phonon confinement and Fano effect on Raman line shape for semiconductor nanostructures: Analytical study. Solid State Communications, 2016, 230, 25-29.	1.9	42
44	Effect of Hf doping on the structural, dielectric and optical properties of CaCu3Ti4O12 ceramic. Journal of Materials Science: Materials in Electronics, 2016, 27, 5878-5885.	2.2	11
45	Room temperature magnetodielectric studies on Mn-doped LaGaO ₃ . Materials Research Express, 2015, 2, 096105.	1.6	17
46	Effect of silicon resistivity on its porosification using metal induced chemical etching: morphology and photoluminescence studies. Materials Research Express, 2015, 2, 036501.	1.6	22
47	Origin of photoluminescence from silicon nanowires prepared by metal induced etching (MIE). AIP Conference Proceedings, 2015, , .	0.4	1
48	Silicon nanowires prepared by metal induced etching (MIE): good field emitters. RSC Advances, 2014, 4, 57799-57803.	3.6	33
49	Qualitative Evolution of Asymmetric Raman Line-Shape for NanoStructures. Silicon, 2014, 6, 117-121.	3.3	59