Yuchuan Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1031641/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Surface Passivation of MAPbBr ₃ Perovskite Single Crystals to Suppress Ion Migration and Enhance Photoelectronic Performance. ACS Applied Materials & Interfaces, 2022, 14, 10917-10926.	4.0	39
2	Sustainable development of perovskite solar cells: keeping a balance between toxicity and efficiency. Journal of Materials Chemistry A, 2022, 10, 8159-8171.	5.2	19
3	Improving the Performance of Perovskite Solar Cells with Insulating Additive-Modified Hole Transport Layers. ACS Applied Materials & Interfaces, 2022, 14, 11500-11508.	4.0	14
4	Superfast crystalline powder synthetic strategy toward scale-up of perovskite solar cells. Materials Today Energy, 2022, 27, 101049.	2.5	4
5	Low-intensity–low-temperature stability assessment of perovskite solar cells operating on simulated Martian surface conditions. Physical Chemistry Chemical Physics, 2022, 24, 17716-17722.	1.3	3
6	Metallic surface doping of metal halide perovskites. Nature Communications, 2021, 12, 7.	5.8	66
7	Defect Passivation via Additive Engineering to Improve Photodetection Performance in CsPbl ₂ Br Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 56358-56365.	4.0	25
8	Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5, 657-665.	19.8	186
9	Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nature Communications, 2020, 11, 2215.	5.8	47
10	Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 5781-5787.	6.6	585
11	Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances, 2019, 5, eaav8925.	4.7	388
12	Unveiling the operation mechanism of layered perovskite solar cells. Nature Communications, 2019, 10, 1008.	5.8	216
13	Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nature Communications, 2018, 9, 1625.	5.8	314
14	CH ₃ NH ₃ PbI ₃ perovskites: Ferroelasticity revealed. Science Advances, 2017, 3, e1602165.	4.7	257
15	Matching Charge Extraction Contact for Wideâ€Bandgap Perovskite Solar Cells. Advanced Materials, 2017, 29, 1700607.	11.1	178
16	Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.	4.7	635
17	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	23.3	927
18	Electricâ€Fieldâ€Ðriven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures. Advanced Energy Materials, 2016, 6, 1501803.	10.2	287

Уисниан Shao

#	Article	IF	CITATIONS
19	Lateralâ€&tructure Singleâ€Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling. Advanced Materials, 2016, 28, 2816-2821.	11.1	144
20	Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?. Energy and Environmental Science, 2016, 9, 3650-3656.	15.6	239
21	Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nature Communications, 2016, 7, 12806.	5.8	350
22	Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nature Energy, 2016, 1, .	19.8	646
23	Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy and Environmental Science, 2016, 9, 1752-1759.	15.6	917
24	Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500615.	10.2	567
25	Electron-hole diffusion lengths > 175 μm in solution-grown CH ₃ NH ₃ Pbl ₃ single crystals. Science, 2015, 347, 967-970.	6.0	4,642
26	Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Communications, 2015, 6, 7747.	5.8	1,336
27	Abnormal crystal growth in CH ₃ NH ₃ PbI _{3â~3x} Cl _x using a multi-cycle solution coating process. Energy and Environmental Science, 2015, 8, 2464-2470.	15.6	240
28	Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells. Nano Energy, 2015, 16, 47-53.	8.2	36
29	Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy and Environmental Science, 2015, 8, 1544-1550.	15.6	606
30	Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9146-9151.	5.2	74
31	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686.	15.6	1,201
32	Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14, 193-198.	13.3	1,372
33	Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5, 5784.	5.8	2,531
34	Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy and Environmental Science, 2014, 7, 2619-2623.	15.6	1,154
35	Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy and Environmental Science, 2014, 7, 2359-2365.	15.6	754
36	Solvent Annealing of Perovskiteâ€Induced Crystal Growth for Photovoltaicâ€Device Efficiency Enhancement. Advanced Materials, 2014, 26, 6503-6509.	11.1	1,527

#	Article	IF	CITATIONS
37	Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, 2014, 2, 18508-18514.	5.2	276