
Tasuku Akiyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1031625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A sensory neuron–expressed IL-31 receptor mediates TÂhelper cell–dependent itch: Involvement of TRPV1 andÂTRPA1. Journal of Allergy and Clinical Immunology, 2014, 133, 448-460.e7.	2.9	556
2	Neural processing of itch. Neuroscience, 2013, 250, 697-714.	2.3	236
3	Frataxin Deficiency Leads to Defects in Expression of Antioxidants and Nrf2 Expression in Dorsal Root Ganglia of the Friedreich's Ataxia YG8R Mouse Model. Antioxidants and Redox Signaling, 2013, 19, 1481-1493.	5.4	127
4	Involvement of TRPV4 in Serotonin-Evoked Scratching. Journal of Investigative Dermatology, 2016, 136, 154-160.	0.7	114
5	Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain, 2010, 151, 378-383.	4.2	105
6	Transmitters and Pathways Mediating Inhibition of Spinal Itch-Signaling Neurons by Scratching and Other Counterstimuli. PLoS ONE, 2011, 6, e22665.	2.5	98
7	The vicious cycle of itch and anxiety. Neuroscience and Biobehavioral Reviews, 2018, 87, 17-26.	6.1	93
8	Mouse Model of Touch-Evoked Itch (Alloknesis). Journal of Investigative Dermatology, 2012, 132, 1886-1891.	0.7	90
9	Roles of glutamate, substance P, and gastrin-releasing peptide as spinal neurotransmitters of histaminergic and nonhistaminergic itch. Pain, 2014, 155, 80-92.	4.2	89
10	Mouse model of imiquimod-induced psoriatic itch. Pain, 2016, 157, 2536-2543.	4.2	83
11	Activation of Superficial Dorsal Horn Neurons in the Mouse by a PAR-2 Agonist and 5-HT: Potential Role in Itch. Journal of Neuroscience, 2009, 29, 6691-6699.	3.6	82
12	Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus. Journal of Clinical Investigation, 2014, 124, 2683-2695.	8.2	81
13	Scratching Behavior and Fos Expression in Superficial Dorsal Horn Elicited by Protease-Activated Receptor Agonists and Other Itch Mediators in Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 945-951.	2.5	74
14	Facial Injections of Pruritogens and Algogens Excite Partly Overlapping Populations of Primary and Second-Order Trigeminal Neurons in Mice. Journal of Neurophysiology, 2010, 104, 2442-2450.	1.8	73
15	A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. Pain, 2015, 156, 1240-1246.	4.2	73
16	Differential Itch- and Pain-related Behavioral Responses and µ-opoid Modulation in Mice. Acta Dermato-Venereologica, 2010, 90, 575-581.	1.3	69
17	Alloknesis and hyperknesis—mechanisms, assessment methodology, and clinical implications of itch sensitization. Pain, 2018, 159, 1185-1197.	4.2	69
18	Excitation of Mouse Superficial Dorsal Horn Neurons by Histamine and/or PAR-2 Agonist: Potential Role in Itch. Journal of Neurophysiology, 2009, 102, 2176-2183.	1.8	56

ΤΑSUKU ΑΚΙΥΑΜΑ

#	Article	IF	CITATIONS
19	Roles for substance P and gastrin-releasing peptide as neurotransmitters released by primary afferent pruriceptors. Journal of Neurophysiology, 2013, 109, 742-748.	1.8	54
20	A Subpopulation of Amygdala Neurons Mediates the Affective Component of Itch. Journal of Neuroscience, 2019, 39, 3345-3356.	3.6	48
21	Protease-Activated Receptors and Itch. Handbook of Experimental Pharmacology, 2015, 226, 219-235.	1.8	45
22	Cross-sensitization of histamine-independent itch in mouse primary sensory neurons. Neuroscience, 2012, 226, 305-312.	2.3	37
23	Central Mechanisms of Itch. Current Problems in Dermatology, 2016, 50, 11-17.	0.7	37
24	Spontaneous itch in the absence of hyperalgesia in a mouse hindpaw dry skin model. Neuroscience Letters, 2010, 484, 62-65.	2.1	32
25	Nalfurafine Suppresses Pruritogen- and Touch-evoked Scratching Behavior in Models of Acute and Chronic Itch in Mice. Acta Dermato-Venereologica, 2015, 95, 147-150.	1.3	31
26	Anatomical evidence of pruriceptive trigeminothalamic and trigeminoparabrachial projection neurons in mice. Journal of Comparative Neurology, 2016, 524, 244-256.	1.6	28
27	Behavioral model of itch, alloknesis, pain and allodynia in the lower hindlimb and correlative responses of lumbar dorsal horn neurons in the mouse. Neuroscience, 2014, 266, 38-46.	2.3	23
28	Siteâ€dependent and stateâ€dependent inhibition of pruritogenâ€responsive spinal neurons by scratching. European Journal of Neuroscience, 2012, 36, 2311-2316.	2.6	21
29	Antipruritic Effects of Janus Kinase Inhibitor Tofacitinib in a Mouse Model of Psoriasis. Acta Dermato-Venereologica, 2019, 99, 298-303.	1.3	20
30	Enhanced responses of lumbar superficial dorsal horn neurons to intradermal PAR-2 agonist but not histamine in a mouse hindpaw dry skin itch model. Journal of Neurophysiology, 2011, 105, 2811-2817.	1.8	19
31	Role of spinal bombesin-responsive neurons in nonhistaminergic itch. Journal of Neurophysiology, 2014, 112, 2283-2289.	1.8	18
32	Role of neurturin in spontaneous itch and increased nonpeptidergic intraepidermal fiber density in a mouse model of psoriasis. Pain, 2017, 158, 2196-2202.	4.2	18
33	Effects of pruritogens and algogens on rostral ventromedial medullary ON and OFF cells. Journal of Neurophysiology, 2018, 120, 2156-2163.	1.8	16
34	An Insatiable Itch. Journal of Pain, 2009, 10, 792-797.	1.4	15
35	Disinhibition of Touch-Evoked Itch in a Mouse Model of Psoriasis. Journal of Investigative Dermatology, 2019, 139, 1407-1410.	0.7	15
36	Differing intrinsic biological properties between forebrain and spinal oligodendroglial lineage cells. Journal of Neurochemistry, 2017, 142, 378-391.	3.9	12

ΤΑSUKU ΑΚΙΥΑΜΑ

#	Article	IF	CITATIONS
37	Modulation of Itch by Localized Skin Warming and Cooling. Acta Dermato-Venereologica, 2018, 98, 855-861.	1.3	12
38	Intradermal endothelin-1 excites bombesin-responsive superficial dorsal horn neurons in the mouse. Journal of Neurophysiology, 2015, 114, 2528-2534.	1.8	11
39	Low-Threshold Mechanosensitive VGLUT3-Lineage Sensory Neurons Mediate Spinal Inhibition of Itch by Touch. Journal of Neuroscience, 2020, 40, 7688-7701.	3.6	11
40	New insights into the mechanisms behind mechanical itch. Experimental Dermatology, 2020, 29, 680-686.	2.9	11
41	Scratching inhibits serotonin-evoked responses of rat dorsal horn neurons in a site- and state-dependent manner. Neuroscience, 2013, 250, 275-281.	2.3	9
42	Innocuous warming enhances peripheral serotonergic itch signaling and evokes enhanced responses in serotonin-responsive dorsal horn neurons in the mouse. Journal of Neurophysiology, 2017, 117, 251-259.	1.8	9
43	Evaluation of the Synuclein-γ (SNCG) Gene as a PPARγ Target in Murine Adipocytes, Dorsal Root Ganglia Somatosensory Neurons, and Human Adipose Tissue. PLoS ONE, 2015, 10, e0115830.	2.5	8
44	Why does stress aggravate itch? A possible role of the amygdala. Experimental Dermatology, 2019, 28, 1439-1441.	2.9	7
45	ILâ€23 modulates histamineâ€evoked itch and responses of pruriceptors in mice. Experimental Dermatology, 2020, 29, 1209-1215.	2.9	7
46	Expression of Histidine Decarboxylase in the Epidermis of Primates with Chronic Itch. Acta Dermato-Venereologica, 2017, 97, 739-740.	1.3	5
47	Peripheral gabapentin regulates mosquito allergy-induced itch in mice. European Journal of Pharmacology, 2018, 833, 44-49.	3.5	2