
Anne T Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical Advances of Therapies for Laminopathies. Journal of Clinical Medicine, 2021, 10, 4834.	2.4	4
2	Protein Kinase C Alpha Cellular Distribution, Activity, and Proximity with Lamin A/C in Striated Muscle Laminopathies. Cells, 2020, 9, 2388.	4.1	6
3	Lamin A/C Assembly Defects in LMNA-Congenital Muscular Dystrophy Is Responsible for the Increased Severity of the Disease Compared with Emery–Dreifuss Muscular Dystrophy. Cells, 2020, 9, 844.	4.1	29
4	Consequences of Lmna Exon 4 Mutations in Myoblast Function. Cells, 2020, 9, 1286.	4.1	6
5	A Muscle Hybrid Promoter as a Novel Tool for Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 15, 157-169.	4.1	16
6	FHL1 is a major host factor for chikungunya virus infection. Nature, 2019, 574, 259-263.	27.8	49
7	SMAD6 overexpression leads to accelerated myogenic differentiation of LMNA mutated cells. Scientific Reports, 2018, 8, 5618.	3.3	6
8	Gene Therapy via Trans-Splicing for LMNA-Related Congenital Muscular Dystrophy. Molecular Therapy - Nucleic Acids, 2018, 10, 376-386.	5.1	29
9	The Pathogenesis and Therapies of Striated Muscle Laminopathies. Frontiers in Physiology, 2018, 9, 1533.	2.8	30
10	FHL1B Interacts with Lamin A/C andÂEmerin at the Nuclear Lamina andÂisÂMisregulated in Emery-Dreifuss Muscular Dystrophy. Journal of Neuromuscular Diseases, 2016, 3, 497-510.	2.6	17
11	Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse. Neuromuscular Disorders, 2016, 26, 490-499.	0.6	30
12	Gene Therapy for LMNA-related Congenital Muscular Dystrophy (L-CMD) by Trans-Splicing. Orphanet Journal of Rare Diseases, 2015, 10, .	2.7	2
13	FHL1 protein isoforms in Emery-Dreifuss muscular dystrophy. Orphanet Journal of Rare Diseases, 2015, 10, .	2.7	0
14	Severe dystonia, cerebellar atrophy, and cardiomyopathy likely caused by a missense mutation in TOR1AIP1. Orphanet Journal of Rare Diseases, 2014, 9, 174.	2.7	43
15	Striated muscle laminopathies. Seminars in Cell and Developmental Biology, 2014, 29, 107-115.	5.0	48
16	Cellular micro-environments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. Journal of Cell Science, 2014, 127, 2873-84.	2.0	105
17	Muscle dystrophy-causing ΔK32 lamin A/C mutant does not impair functions of nucleoplasmic LAP2α - lamin A/C complexes in mice. Journal of Cell Science, 2013, 126, 1753-62.	2.0	31
18	Nuclear accumulation of androgen receptor in gender difference of dilated cardiomyopathy due to lamin A/C mutations. Cardiovascular Research, 2013, 99, 382-394.	3.8	41

Anne T Bertrand

#	Article	IF	CITATIONS
19	Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity. Human Molecular Genetics, 2013, 22, 3152-3164.	2.9	72
20	DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death. Human Molecular Genetics, 2012, 21, 1037-1048.	2.9	77
21	Diseases of the Nucleoskeleton. , 2012, , 1003-1012.		0
22	Lamin A/C Mutants Disturb Sumo1 Localization and Sumoylation in Vitro and in Vivo. PLoS ONE, 2012, 7, e45918.	2.5	26
23	Clinical and genetic heterogeneity in laminopathies. Biochemical Society Transactions, 2011, 39, 1687-1692.	3.4	107
24	Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. European Journal of Human Genetics, 2011, 19, 647-654.	2.8	44
25	Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Human Molecular Genetics, 2011, 20, 694-704.	2.9	87
26	Apoptosis-Inducing Factor Regulates Skeletal Muscle Progenitor Cell Number and Muscle Phenotype. PLoS ONE, 2011, 6, e27283.	2.5	30
27	Mutations of the FHL1 Gene Cause Emery-Dreifuss Muscular Dystrophy. American Journal of Human Genetics, 2009, 85, 338-353.	6.2	208
28	Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. Journal of Experimental Medicine, 2007, 204, 1227-1235.	8.5	37
29	Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. Journal of Cell Biology, 2007, 177, i5-i5.	5.2	0
30	EUK-8, a Superoxide Dismutase and Catalase Mimetic, Reduces Cardiac Oxidative Stress and Ameliorates Pressure Overload-Induced Heart Failure in the Harlequin Mouse Mutant. Journal of the American College of Cardiology, 2006, 48, 824-832.	2.8	110
31	New Role for Serum Response Factor in Postnatal Skeletal Muscle Growth and Regeneration via the Interleukin 4 and Insulin-Like Growth Factor 1 Pathways. Molecular and Cellular Biology, 2006, 26, 6664-6674.	2.3	72
32	Downregulation of Apoptosis-Inducing Factor in Harlequin Mutant Mice Sensitizes the Myocardium to Oxidative Stress–Related Cell Death and Pressure Overload–Induced Decompensation. Circulation Research, 2005, 96, e92-e101.	4.5	104
33	CAPON expression in skeletal muscle is regulated by position, repair, NOS activity, and dystrophy. Experimental Cell Research, 2005, 302, 170-179.	2.6	47
34	Mouse muscle identity: The position-dependent and fast fiber-specific expression of a transgene in limb muscles is methylation-independent and cell-autonomous. Developmental Dynamics, 2003, 228, 594-605.	1.8	7
35	Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. American Journal of Physiology - Cell Physiology, 2003, 285, C1071-C1081.	4.6	30