
Andrew B Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030640/publications.pdf Version: 2024-02-01

ΔΝΙΠΡΕΊΛ Β ΜΛΑΡΠ

#	Article	IF	CITATIONS
1	From structure to sequence: Antibody discovery using cryoEM. Science Advances, 2022, 8, eabk2039.	10.3	18
2	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	3.4	13
3	Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature, 2022, 602, 314-320.	27.8	78
4	Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1. Nature Communications, 2022, 13, 850.	12.8	13
5	High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 27.	6.0	13
6	Structure-guided changes at the V2 apex of HIV-1 clade C trimer enhance elicitation of autologous neutralizing and broad V1V2-scaffold antibodies. Cell Reports, 2022, 38, 110436.	6.4	6
7	Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Communications Biology, 2022, 5, 342.	4.4	41
8	A combination of potently neutralizing monoclonal antibodies isolated from an Indian convalescent donor protects against the SARS-CoV-2 Delta variant. PLoS Pathogens, 2022, 18, e1010465.	4.7	8
9	Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Science Advances, 2022, 8, eabn2911.	10.3	28
10	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	7.1	27
11	Influenza chimeric hemagglutinin structures in complex with broadly protective antibodies to the stem and trimer interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
12	Conjugation of a Tollâ€Like Receptor Agonist to Glycans of an HIV Nativeâ€Like Envelope Trimer Preserves Neutralization Epitopes. ChemBioChem, 2022, 23, .	2.6	4
13	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	14.5	39
14	The Pre-Existing Human Antibody Repertoire to Computationally Optimized Influenza H1 Hemagglutinin Vaccines. Journal of Immunology, 2022, 209, 5-15.	0.8	5
15	Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Reports, 2021, 34, 108682.	6.4	31
16	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	6.0	33
17	The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathogens, 2021, 17, e1009257.	4.7	23
18	Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021, 17, e1009282.	4.7	42

#	Article	IF	CITATIONS
19	Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
20	Prominent Neutralizing Antibody Response Targeting the Ebolavirus Glycoprotein Subunit Interface Elicited by Immunization. Journal of Virology, 2021, 95, .	3.4	6
21	A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathogens, 2021, 17, e1009407.	4.7	23
22	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	28.9	154
23	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	28.9	180
24	Elicitation of potent serum neutralizing antibody responses in rabbits by immunization with an HIV-1 clade C trimeric Env derived from an Indian elite neutralizer. PLoS Pathogens, 2021, 17, e1008977.	4.7	4
25	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	6.4	37
26	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	6.4	22
27	Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. Structure, 2021, 29, 385-392.e5.	3.3	37
28	Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nature Communications, 2021, 12, 2938.	12.8	219
29	Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science, 2021, 373, 818-823.	12.6	309
30	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	11.0	49
31	Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Reports, 2021, 35, 109167.	6.4	8
32	Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines. Nature Communications, 2021, 12, 2633.	12.8	25
33	First exposure to the pandemic H1N1 virus induced broadly neutralizing antibodies targeting hemagglutinin head epitopes. Science Translational Medicine, 2021, 13, .	12.4	38
34	Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. MBio, 2021, 12, e0042921.	4.1	6
35	Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Science Advances, 2021, 7, .	10.3	37
36	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	6.4	95

#	Article	IF	CITATIONS
37	Human antibody recognition of H7N9 influenza virus HA following natural infection. JCI Insight, 2021, 6, .	5.0	1
38	Antibodies from Rabbits Immunized with HIV-1 Clade B SOSIP Trimers Can Neutralize Multiple Clade B Viruses by Destabilizing the Envelope Glycoprotein. Journal of Virology, 2021, 95, e0009421.	3.4	5
39	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	4.7	18
40	Murine Monoclonal Antibodies against the Receptor Binding Domain of SARS-CoV-2 Neutralize Authentic Wild-Type SARS-CoV-2 as Well as B.1.1.7 and B.1.351 Viruses and Protect <i>In Vivo</i> in a Mouse Model in a Neutralization-Dependent Manner. MBio, 2021, 12, e0100221.	4.1	7
41	Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface. Journal of Clinical Investigation, 2021, 131, .	8.2	20
42	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
43	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	12.4	79
44	High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. ELife, 2021, 10, .	6.0	15
45	One dose of COVID-19 nanoparticle vaccine REVC-128 protects against SARS-CoV-2 challenge at two weeks post-immunization. Emerging Microbes and Infections, 2021, 10, 2016-2029.	6.5	12
46	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	28.9	21
47	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	6.4	5
48	Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Frontiers in Immunology, 2021, 12, 808047.	4.8	4
49	Diverse Antibody Responses to Conserved Structural Motifs in Plasmodium falciparum Circumsporozoite Protein. Journal of Molecular Biology, 2020, 432, 1048-1063.	4.2	28
50	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	3.4	11
51	Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science, 2020, 370, 1089-1094.	12.6	290
52	Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. Cell Reports, 2020, 32, 108122.	6.4	28
53	An Alternative Binding Mode of IGHV3-53 Antibodies to the SARS-CoV-2 Receptor Binding Domain. Cell Reports, 2020, 33, 108274.	6.4	152
54	Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17957-17964.	7.1	57

#	Article	IF	CITATIONS
55	A Vaccine Displaying a Trimeric Influenza-A HA Stem Protein on Capsid-Like Particles Elicits Potent and Long-Lasting Protection in Mice. Vaccines, 2020, 8, 389.	4.4	13
56	Discoveries in structure and physiology of mechanically activated ion channels. Nature, 2020, 587, 567-576.	27.8	299
57	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	14.3	185
58	Drivers of recombinant soluble influenza A virus hemagglutinin and neuraminidase expression in mammalian cells. Protein Science, 2020, 29, 1975-1982.	7.6	6
59	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	4.7	52
60	Visualization of the HIV-1 Env glycan shield across scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28014-28025.	7.1	57
61	Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity, 2020, 53, 1230-1244.e5.	14.3	61
62	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	4.7	61
63	SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 2020, 183, 1043-1057.e15.	28.9	860
64	Human germinal centres engage memory and naive B cells after influenza vaccination. Nature, 2020, 586, 127-132.	27.8	194
65	Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. Npj Vaccines, 2020, 5, 72.	6.0	39
66	A Strain-Specific Inhibitor of Receptor-Bound HIV-1 Targets a Pocket near the Fusion Peptide. Cell Reports, 2020, 33, 108428.	6.4	5
67	Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. IScience, 2020, 23, 101836.	4.1	11
68	Innovations in structure-based antigen design and immune monitoring for next generation vaccines. Current Opinion in Immunology, 2020, 65, 50-56.	5.5	43
69	HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Reports, 2020, 31, 107583.	6.4	60
70	Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature Communications, 2020, 11, 2688.	12.8	304
71	Structural basis of broad HIV neutralization by a vaccine-induced cow antibody. Science Advances, 2020, 6, eaba0468.	10.3	31
72	Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 2020, 369, 643-650.	12.6	1,104

#	Article	IF	CITATIONS
73	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	10.3	18
74	Harnessing Activin A Adjuvanticity to Promote Antibody Responses to BG505 HIV Envelope Trimers. Frontiers in Immunology, 2020, 11, 1213.	4.8	4
75	Mapping Polyclonal Antibody Responses in Non-human Primates Vaccinated with HIV Env Trimer Subunit Vaccines. Cell Reports, 2020, 30, 3755-3765.e7.	6.4	81
76	Structure and mechanism of monoclonal antibody binding to theÂjunctional epitope of Plasmodium falciparumÂcircumsporozoite protein. PLoS Pathogens, 2020, 16, e1008373.	4.7	30
77	Molecular Dynamics Simulations Studies of the Proton Channel Otopetrin and Other Mechanically-Activated Ion Channels. Biophysical Journal, 2020, 118, 274a-275a.	0.5	0
78	Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure, 2020, 28, 897-909.e6.	3.3	46
79	Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nature Medicine, 2020, 26, 430-440.	30.7	172
80	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	14.3	71
81	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	3.4	57
82	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	3.4	29
83	Anti–influenza H7 human antibody targets antigenic site in hemagglutinin head domain interface. Journal of Clinical Investigation, 2020, 130, 4734-4739.	8.2	13
84	A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathogens, 2020, 16, e1009089.	4.7	55
85	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	6.0	123
86	Title is missing!. , 2020, 16, e1008665.		0
87	Title is missing!. , 2020, 16, e1008665.		0
88	Title is missing!. , 2020, 16, e1008665.		0
89	Title is missing!. , 2020, 16, e1008665.		0
90	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. ,		0

2020, 16, e1008753.

#	Article	IF	CITATIONS
91	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
92	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
93	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		Ο
94	Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathogens, 2019, 15, e1007920.	4.7	61
95	Differences in the Binding Affinity of an HIV-1 V2 Apex-Specific Antibody for the SIV _{smm/mac} Envelope Clycoprotein Uncouple Antibody-Dependent Cellular Cytotoxicity from Neutralization. MBio, 2019, 10, .	4.1	18
96	Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15194-15199.	7.1	65
97	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	4.7	35
98	A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science, 2019, 366, .	12.6	172
99	Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Cell Reports, 2019, 28, 3395-3405.e6.	6.4	63
100	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	12.8	149
101	Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor-binding head domains. PLoS Biology, 2019, 17, e3000139.	5.6	37
102	Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 2019, 10, 2342.	12.8	688
103	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	12.8	116
104	Structures of the otopetrin proton channels Otop1 and Otop3. Nature Structural and Molecular Biology, 2019, 26, 518-525.	8.2	48
105	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	11.0	42
106	Field-Based Affinity Optimization of a Novel Azabicyclohexane Scaffold HIV-1 Entry Inhibitor. Molecules, 2019, 24, 1581.	3.8	8
107	Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell, 2019, 177, 1153-1171.e28.	28.9	293
108	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	6.4	35

#	Article	IF	CITATIONS
109	Structural Topology of Glycoprotein Surface Networks using High Throughput Atomistic Modeling and Graph Theory. Biophysical Journal, 2019, 116, 166a-167a.	0.5	0
110	A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. Cell, 2019, 177, 1136-1152.e18.	28.9	177
111	Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 340-347.	0.8	17
112	Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Nature Microbiology, 2019, 4, 734-747.	13.3	158
113	Probing the Mechanosensing Features of Mammalian Piezo Channels and Plant OSCA Channels via Molecular Dynamics Simulations. Biophysical Journal, 2019, 116, 219a.	0.5	1
114	Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens. Journal of Pharmaceutical Sciences, 2019, 108, 2264-2277.	3.3	16
115	Stabilization of the V2 loop improves the presentation of V2 loop–associated broadly neutralizing antibody epitopes on HIV-1 envelope trimers. Journal of Biological Chemistry, 2019, 294, 5616-5631.	3.4	16
116	The HIV-1 Envelope Glycoprotein C3/V4 Region Defines a Prevalent Neutralization Epitope following Immunization. Cell Reports, 2019, 27, 586-598.e6.	6.4	32
117	Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. Nature Communications, 2019, 10, 763.	12.8	30
118	Playing Chess with HIV. Immunity, 2019, 50, 283-285.	14.3	0
119	SOS and IP Modifications Predominantly Affect the Yield but Not Other Properties of SOSIP.664 HIV-1 Env Glycoprotein Trimers. Journal of Virology, 2019, 94, .	3.4	4
120	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	14.3	111
121	An MPER antibody neutralizes HIV-1 using germline features shared among donors. Nature Communications, 2019, 10, 5389.	12.8	44
122	Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies. Cell Host and Microbe, 2019, 26, 729-738.e4.	11.0	51
123	Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. Cell Host and Microbe, 2019, 26, 715-728.e8.	11.0	49
124	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
125	Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. Journal of Molecular Biology, 2019, 431, 842-856.	4.2	36
126	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	3.4	66

#	Article	IF	CITATIONS
127	Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nature Communications, 2018, 9, 877.	12.8	65
128	Effects of Adjuvants on HIV-1 Envelope Glycoprotein SOSIP Trimers <i>In Vitro</i> . Journal of Virology, 2018, 92, .	3.4	34
129	Glycosylation of Human IgA Directly Inhibits Influenza A and Other Sialic-Acid-Binding Viruses. Cell Reports, 2018, 23, 90-99.	6.4	80
130	Envelope proteins of two HIV-1 clades induced different epitope-specific antibody response. Vaccine, 2018, 36, 1627-1636.	3.8	11
131	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	3.7	23
132	Structure of the mechanically activated ion channel Piezo1. Nature, 2018, 554, 481-486.	27.8	401
133	Structure and Immune Recognition of the HIV Glycan Shield. Annual Review of Biophysics, 2018, 47, 499-523.	10.0	115
134	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. Journal of Biological Chemistry, 2018, 293, 1688-1701.	3.4	40
135	cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIVâ€1 envelope glycoprotein vaccine candidate. Biotechnology and Bioengineering, 2018, 115, 885-899.	3.3	75
136	P-C5 Broadly neutralizing nanobodies selected from dromedary immune libraries with subtype C SOSIP Env glycoproteins: Optimization and preclinical development. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 77, 58-58.	2.1	0
137	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	10.3	75
138	Deception through Mimicry: A Cellular Antiviral Strategy. Cell, 2018, 175, 1728-1729.	28.9	0
139	Development of Smartphone Accelerometer-Based Airfield Friction Assessment Tools. Transportation Research Record, 2018, 2672, 95-105.	1.9	1
140	Cryo-EM structure of <i>P. falciparum</i> circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. Science Advances, 2018, 4, eaau8529.	10.3	70
141	Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports, 2018, 8, 15701.	3.3	408
142	Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science, 2018, 362, 598-602.	12.6	170
143	Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Reports, 2018, 24, 2723-2732.e4.	6.4	26
144	Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. Cell Reports, 2018, 24, 3324-3338.e5.	6.4	49

#	Article	IF	CITATIONS
145	Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nature Communications, 2018, 9, 3693.	12.8	124
146	Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nature Communications, 2018, 9, 1956.	12.8	50
147	Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S612-S626.	4.0	146
148	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	4.7	28
149	Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity, 2018, 49, 288-300.e8.	14.3	175
150	Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Frontiers in Immunology, 2018, 9, 1116.	4.8	27
151	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	14.3	61
152	A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nature Communications, 2018, 9, 2669.	12.8	67
153	Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nature Microbiology, 2018, 3, 670-677.	13.3	68
154	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173
155	Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design. Cell Reports, 2018, 23, 3249-3261.	6.4	52
156	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	4.7	111
157	Structure of the human volume regulated anion channel. ELife, 2018, 7, .	6.0	91
158	OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. ELife, 2018, 7, .	6.0	230
159	Cryo-EM structure of the mechanically activated ion channel OSCA1.2. ELife, 2018, 7, .	6.0	118
160	The <scp>HIV</scp> â€1 envelope glycoprotein structure: nailing down a moving target. Immunological Reviews, 2017, 275, 21-32.	6.0	251
161	Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. MBio, 2017, 8, .	4.1	28
162	Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Reports, 2017, 19, 413-424.	6.4	66

#	Article	IF	CITATIONS
163	The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 2017, 25, 773-782.e5.	3.3	39
164	Stabilization of a soluble, native-like trimeric form of an efficiently cleaved Indian HIV-1 clade C envelope glycoprotein. Journal of Biological Chemistry, 2017, 292, 8236-8243.	3.4	24
165	A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure. Immunity, 2017, 46, 690-702.	14.3	216
166	In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nature Communications, 2017, 8, 15371.	12.8	55
167	Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity, 2017, 46, 777-791.e10.	14.3	81
168	Glycine Substitution at Helix-to-Coil Transitions Facilitates the Structural Determination of a Stabilized Subtype C HIV Envelope Glycoprotein. Immunity, 2017, 46, 792-803.e3.	14.3	96
169	Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell, 2017, 169, 878-890.e15.	28.9	145
170	Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell, 2017, 169, 891-904.e15.	28.9	103
171	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
172	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	57
173	Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nature Biotechnology, 2017, 35, 667-671.	17.5	108
174	Improving the Expression and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers by Targeted Sequence Changes. Journal of Virology, 2017, 91, .	3.4	27
175	Time-course, negative-stain electron microscopy–based analysis for investigating protein–protein interactions at the single-molecule level. Journal of Biological Chemistry, 2017, 292, 19400-19410.	3.4	9
176	Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Cell Reports, 2017, 21, 222-235.	6.4	58
177	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	6.4	171
178	HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates. Journal of Virology, 2017, 91, .	3.4	15
179	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	8.5	151
180	High-Throughput Protein Engineering Improves the Antigenicity and Stability of Soluble HIV-1 Envelope Glycoprotein SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	22

#	Article	IF	CITATIONS
181	Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Scientific Reports, 2017, 7, 8390.	3.3	31
182	Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature, 2017, 548, 108-111.	27.8	154
183	Characterization of a stable HIV-1 B/C recombinant, soluble, and trimeric envelope glycoprotein (Env) highly resistant to CD4-induced conformational changes. Journal of Biological Chemistry, 2017, 292, 15849-15858.	3.4	12
184	Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7348-E7357.	7.1	944
185	EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing. Bioinformatics, 2017, 33, 3824-3826.	4.1	27
186	HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage. Immunity, 2017, 47, 990-1003.e9.	14.3	90
187	Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nature Communications, 2017, 8, 1655.	12.8	142
188	Structural basis for antibody recognition of the NANP repeats in <i>Plasmodium falciparum</i> circumsporozoite protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10438-E10445.	7.1	116
189	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	27.8	217
190	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	13.3	144
191	Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Frontiers in Immunology, 2017, 8, 1025.	4.8	21
192	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	4.7	33
193	Targeted N-glycan deletion at the receptor-binding site retains HIV Env NFL trimer integrity and accelerates the elicited antibody response. PLoS Pathogens, 2017, 13, e1006614.	4.7	58
194	A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathogens, 2016, 12, e1005409.	4.7	49
195	Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nature Communications, 2016, 7, 12040.	12.8	134
196	Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nature Communications, 2016, 7, 12041.	12.8	146
197	Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity, 2016, 44, 939-950.	14.3	85
198	Pre-fusion structure of a human coronavirus spike protein. Nature, 2016, 531, 118-121.	27.8	623

#	Article	IF	CITATIONS
199	Structure-Guided Redesign Increases the Propensity of HIV Env To Generate Highly Stable Soluble Trimers. Journal of Virology, 2016, 90, 2806-2817.	3.4	126
200	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
201	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	28.9	230
202	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
203	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
204	A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans. Immunity, 2016, 45, 31-45.	14.3	129
205	Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12768-12773.	7.1	78
206	Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nature Microbiology, 2016, 1, 16128.	13.3	92
207	E-105 Antibodies against ebola virus. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 58.	2.1	0
208	Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. Journal of Virology, 2016, 90, 813-828.	3.4	34
209	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	6.4	80
210	Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell, 2016, 164, 392-405.	28.9	160
211	Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science, 2016, 351, 1043-1048.	12.6	402
212	Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science, 2016, 351, 1078-1083.	12.6	194
213	D-102 Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 52.	2.1	2
214	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	6.4	250
215	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
216	Recognition of influenza H3N2 variant virus by human neutralizing antibodies. JCI Insight, 2016, 1, .	5.0	20

#	Article	IF	CITATIONS
217	Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies. PLoS Pathogens, 2016, 12, e1005767.	4.7	72
218	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	4.7	138
219	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12, 82.	2.0	156
220	Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules, 2015, 5, 2919-2934.	4.0	12
221	Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs. PLoS Pathogens, 2015, 11, e1005016.	4.7	36
222	The Pedagogical Value of LinderstrÃ,m-Lang's Protein Ontology. Biophysical Journal, 2015, 108, 333a.	0.5	0
223	Mechanism of Human Antibody-Mediated Neutralization of Marburg Virus. Cell, 2015, 160, 893-903.	28.9	130
224	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	28.9	341
225	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity, 2015, 43, 1053-1063.	14.3	200
226	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports, 2015, 11, 1604-1613.	6.4	135
227	Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends in Biochemical Sciences, 2015, 40, 101-107.	7.5	95
228	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
229	Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nature Communications, 2015, 6, 7479.	12.8	113
230	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	4.7	100
231	Well-Ordered Trimeric HIV-1 Subtype B and C Soluble Spike Mimetics Generated by Negative Selection Display Native-like Properties. PLoS Pathogens, 2015, 11, e1004570.	4.7	106
232	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	3.4	247
233	Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. Journal of Virology, 2015, 89, 6725-6745.	3.4	24
234	Model Building and Refinement of a Natively Glycosylated HIV-1 Env Protein by High-Resolution Cryoelectron Microscopy. Structure, 2015, 23, 1943-1951.	3.3	93

#	Article	IF	CITATIONS
235	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	12.8	87
236	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	3.4	148
237	A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science, 2015, 349, 1301-1306.	12.6	480
238	Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11947-11952.	7.1	127
239	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2015, 89, 12189-12210.	3.4	88
240	Cleavage-Independent HIV-1 Env Trimers Engineered as Soluble Native Spike Mimetics for Vaccine Design. Cell Reports, 2015, 11, 539-550.	6.4	211
241	Vaccine-elicited primate antibodies use a distinct approach to the HIV-1 primary receptor binding site informing vaccine redesign. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E738-47.	7.1	66
242	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	7.1	324
243	Murine Anti-vaccinia Virus D8 Antibodies Target Different Epitopes and Differ in Their Ability to Block D8 Binding to CS-E. PLoS Pathogens, 2014, 10, e1004495.	4.7	17
244	A Native Linked Soluble Trimer of the HIV-1 Spike Displaying Antigenic and Structural Mimetic Properties. AIDS Research and Human Retroviruses, 2014, 30, A7-A7.	1.1	0
245	Stable 293ÂT and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies. Retrovirology, 2014, 11, 33.	2.0	46
246	Structure of 2G12 Fab ₂ in Complex with Soluble and Fully Glycosylated HIV-1 Env by Negative-Stain Single-Particle Electron Microscopy. Journal of Virology, 2014, 88, 10177-10188.	3.4	67
247	Broadly Neutralizing HIV Antibodies Define a Clycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers. Immunity, 2014, 40, 657-668.	14.3	342
248	A Structurally Distinct Human Mycoplasma Protein that Generically Blocks Antigen-Antibody Union. Science, 2014, 343, 656-661.	12.6	85
249	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	27.8	681
250	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	14.3	323
251	A common solution to group 2 influenza virus neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 445-450.	7.1	187
252	Refocussing Antibody Responses by Chemical Modification of Vaccine Antigens. AIDS Research and Human Retroviruses, 2014, 30, A66-A67.	1,1	0

#	Article	IF	CITATIONS
253	Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17182-17187.	7.1	173
254	Structural Evolution of HIV-1 gp120 Glycan Recognition by the PGT121 Lineage of Potent Broadly Neutralizing Antibodies. AIDS Research and Human Retroviruses, 2014, 30, A66-A66.	1.1	0
255	Characterization of a Broadly Neutralizing Monoclonal Antibody That Targets the Fusion Domain of Group 2 Influenza A Virus Hemagglutinin. Journal of Virology, 2014, 88, 13580-13592.	3.4	110
256	Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies. Cell, 2014, 159, 69-79.	28.9	161
257	Negative Selection Using CD4-binding Site Non-broadly Neutralizing Antibodies Yields Conformationally Homogeneous Clade B and C SOSIP Trimers. AIDS Research and Human Retroviruses, 2014, 30, A118-A118.	1.1	0
258	Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology, 2014, 11, 41.	2.0	139
259	Viral fusion arrested. Nature Chemical Biology, 2014, 10, 797-798.	8.0	1
260	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	27.8	400
261	Antibody 8ANC195 Reveals a Site of Broad Vulnerability on the HIV-1 Envelope Spike. Cell Reports, 2014, 7, 785-795.	6.4	199
262	Flexible Fabs in the Refinement of Complexes by Single-Particle Transmission Electron Microscopy. Biophysical Journal, 2014, 106, 599a.	0.5	0
263	D-101 CryoEM Studies of HIV-1 Envelope Glycoprotein. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 67, 54.	2.1	18
264	Structural Basis for Enhanced HIV-1 Neutralization by a Dimeric Immunoglobulin G Form of the Glycan-Recognizing Antibody 2G12. Cell Reports, 2013, 5, 1443-1455.	6.4	36
265	Characterization of Novel Influenza Vaccines by Transmission Electron Microscopy. Biophysical Journal, 2013, 104, 567a.	0.5	0
266	Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1477-1483.	12.6	793
267	Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1484-1490.	12.6	662
268	Hepatitis C Virus E2 Envelope Glycoprotein Core Structure. Science, 2013, 342, 1090-1094.	12.6	374
269	Antibody Recognition of the Pandemic H1N1 Influenza Virus Hemagglutinin Receptor Binding Site. Journal of Virology, 2013, 87, 12471-12480.	3.4	139
270	Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13386-13391.	7.1	225

#	Article	IF	CITATIONS
271	Structural Characterization of Cleaved, Soluble HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2013, 87, 9865-9872.	3.4	71
272	Integrative Structural Biology. Science, 2013, 339, 913-915.	12.6	216
273	Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science, 2013, 340, 711-716.	12.6	680
274	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	8.2	314
275	Broadly Neutralizing Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the HIV-1 gp120 V3 Base and Multiple Surrounding Glycans. PLoS Pathogens, 2013, 9, e1003342.	4.7	267
276	A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathogens, 2013, 9, e1003618.	4.7	835
277	Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4351-4356.	7.1	236
278	Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18256-18261.	7.1	188
279	Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1203-11.	7.1	127
280	Influences on Trimerization and Aggregation of Soluble, Cleaved HIV-1 SOSIP Envelope Glycoprotein. Journal of Virology, 2013, 87, 9873-9885.	3.4	76
281	Human antibodies that neutralize respiratory droplet transmissible H5N1 influenza viruses. Journal of Clinical Investigation, 2013, 123, 4405-4409.	8.2	31
282	Human antibodies that neutralize respiratory droplet transmissible H5N1 influenza viruses. Journal of Clinical Investigation, 2013, 123, 4979-4979.	8.2	0
283	Highly Conserved Protective Epitopes on Influenza B Viruses. Science, 2012, 337, 1343-1348.	12.6	705
284	Partial Enzymatic Deglycosylation Preserves the Structure of Cleaved Recombinant HIV-1 Envelope Glycoprotein Trimers. Journal of Biological Chemistry, 2012, 287, 24239-24254.	3.4	50
285	Coarse Graining Protein-Phospholipid Interactions and Diffusion with MsbA Flippase. Biophysical Journal, 2012, 102, 661a.	0.5	1
286	A Blueprint for HIV Vaccine Discovery. Cell Host and Microbe, 2012, 12, 396-407.	11.0	348
287	Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature, 2012, 489, 526-532.	27.8	434
288	Coarse grain lipid–protein molecular interactions and diffusion with MsbA flippase. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2178-2190.	2.6	23

#	Article	IF	CITATIONS
289	X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 120-125.	7.1	87
290	A helical processing pipeline for EM structure determination of membrane proteins. Methods, 2011, 55, 350-362.	3.8	5
291	A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris. PLoS ONE, 2011, 6, e22577.	2.5	92
292	A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Clycan Shield. Science, 2011, 334, 1097-1103.	12.6	644
293	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PC9. Nature, 2011, 480, 336-343.	27.8	794
294	Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends in Biochemical Sciences, 2010, 35, 36-42.	7.5	148
295	Helical Crystallization of Two Example Membrane Proteins. Methods in Enzymology, 2010, 483, 143-159.	1.0	4
296	Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. Journal of Structural Biology, 2009, 165, 169-175.	2.8	24
297	Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding. Science, 2009, 323, 1718-1722.	12.6	1,788
298	Similarities and Differences between Frozen-Hydrated, Rigor Acto–S1 Complexes of Insect Flight and Chicken Skeletal Muscles. Journal of Molecular Biology, 2008, 381, 519-528.	4.2	7
299	Reverse actin sliding triggers strong myosin binding that moves tropomyosin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10372-10377.	7.1	23
300	Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19005-19010.	7.1	707
301	Designing Facial Amphiphiles for the Stabilization of Integral Membrane Proteins. Angewandte Chemie - International Edition, 2007, 46, 7023-7025.	13.8	99
302	Designing Facial Amphiphiles for the Stabilization of Integral Membrane Proteins. Angewandte Chemie, 2007, 119, 7153-7155.	2.0	25
303	The structures of MsbA: Insight into ABC transporter-mediated multidrug efflux. FEBS Letters, 2006, 580, 1042-1048.	2.8	35
304	Windex: a toolset for indexing helices. Journal of Structural Biology, 2003, 144, 172-183.	2.8	11
305	Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. SSRN Electronic Journal, 0, , .	0.4	4
306	Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. SSRN Electronic Journal, 0, , .	0.4	1