List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030577/publications.pdf Version: 2024-02-01

		44042	15716
125	34,987	48	125
papers	citations	h-index	g-index
141	141	141	70818
all docs	docs citations	times ranked	citing authors

ΤΟΡΗ ΤΛΚΗΜΙ

#	Article	IF	CITATIONS
1	mTOR-AKT Signaling in Cellular Clock Resetting Triggered by Osmotic Stress. Antioxidants and Redox Signaling, 2022, 37, 631-646.	2.5	3
2	A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Molecular Psychiatry, 2022, 27, 3343-3354.	4.1	4
3	Species-specific formation of paraspeckles in intestinal epithelium revealed by characterization of <i>NEAT1 </i> in naked mole-rat. Rna, 2022, 28, 1128-1143.	1.6	2
4	Comprehensive topographical map of the serotonergic fibers in the male mouse brain. Journal of Comparative Neurology, 2021, 529, 1391-1429.	0.9	19
5	Optogenetic Approaches to Understand the Neural Circuit Mechanism of Social Deficits Seen in Autism Spectrum Disorders. Advances in Experimental Medicine and Biology, 2021, 1293, 523-533.	0.8	4
6	Cranioplastic Surgery and Acclimation Training for Awake Mouse fMRI. Bio-protocol, 2021, 11, e3972.	0.2	5
7	Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nature Communications, 2021, 12, 4056.	5.8	8
8	CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN. Scientific Reports, 2021, 11, 19240.	1.6	6
9	Molecular signatures from multiâ€omics of autism spectrum disorders and schizophrenia. Journal of Neurochemistry, 2021, 159, 647-659.	2.1	10
10	Transcriptome analysis of human neural cells derived from isogenic embryonic stem cells with 16p11.2 deletion. Neuroscience Research, 2021, 171, 114-123.	1.0	2
11	Morphological Classification of the Medial Frontal Cortex Based on Cadaver Dissections: A Guide for Interhemispheric Approach. Neurologia Medico-Chirurgica, 2021, 61, 302-311.	1.0	1
12	Sensing the Sounds of Silence: A Pilot Study on the Detection of Model Mice of Autism Spectrum Disorder from Ultrasonic Vocalisations. , 2021, 2021, 68-71.		1
13	Behavioral neuroscience of autism. Neuroscience and Biobehavioral Reviews, 2020, 110, 60-76.	2.9	78
14	Change in serotonergic modulation contributes to the synaptic imbalance of neuronal circuit at the prefrontal cortex in the 15q11-13 duplication mouse model of autism. Neuropharmacology, 2020, 165, 107931.	2.0	13
15	Altered microbiota composition reflects enhanced communication in 15q11-13 CNV mice. Neuroscience Research, 2020, 161, 59-67.	1.0	8
16	Encoding of social exploration by neural ensembles in the insular cortex. PLoS Biology, 2020, 18, e3000584.	2.6	20
17	Development of serotonergic projections to the suprachiasmatic nucleus in the mouse brain. Neuroscience Letters, 2020, 739, 135438.	1.0	3
18	Upregulated 5-HT1A receptor-mediated currents in the prefrontal cortex layer 5 neurons in the 15q11–13 duplication mouse model of autism. Molecular Brain, 2020, 13, 115.	1.3	5

#	Article	IF	CITATIONS
19	Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. Science Advances, 2020, 6, eaav4520.	4.7	62
20	Imaging the Neural Circuit Basis of Social Behavior: Insights from Mouse and Human Studies. Neurologia Medico-Chirurgica, 2020, 60, 429-438.	1.0	4
21	Behavioral analysis in mice deficient for GAREM2 (Grb2-associated regulator of Erk/MAPK subtype2) that is a subtype of highly expressing in the brain. Molecular Brain, 2019, 12, 94.	1.3	9
22	UBE3A regulates the transcription of IRF, an antiviral immunity. Human Molecular Genetics, 2019, 28, 1947-1958.	1.4	13
23	UBE3A-mediated PTPA ubiquitination and degradation regulate PP2A activity and dendritic spine morphology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12500-12505.	3.3	32
24	Gene expression profile data of the developing small intestine of Id2-deficient mice. Data in Brief, 2019, 24, 103717.	0.5	0
25	Morphological Pattern and Classification of the Superficial Middle Cerebral Vein by Cadaver Dissections: An Embryological Viewpoint. Neurologia Medico-Chirurgica, 2019, 59, 264-270.	1.0	8
26	Fetal neural stem cells from a mouse model of 15q11-13 duplication syndrome exhibit altered differentiation into neurons and astrocytes. Journal of Pharmacological Sciences, 2019, 139, 249-253.	1.1	1
27	Recent genetic and functional insights in autism spectrum disorder. Current Opinion in Neurology, 2019, 32, 627-634.	1.8	7
28	Postsynaptic density proteins and their involvement in neurodevelopmental disorders. Journal of Biochemistry, 2018, 163, 447-455.	0.9	92
29	CNV biology in neurodevelopmental disorders. Current Opinion in Neurobiology, 2018, 48, 183-192.	2.0	89
30	The choroid plexus is an important circadian clock component. Nature Communications, 2018, 9, 1062.	5.8	118
31	Identification of genes regulating GABAergic interneuron maturation. Neuroscience Research, 2018, 134, 18-29.	1.0	9
32	Quantitative evaluation of incomplete preweaning lethality in mice by using the CRISPR/Cas9 system. Scientific Reports, 2018, 8, 16025.	1.6	1
33	Critical roles of serotonin-oxytocin interaction during the neonatal period in social behavior in 15q dup mice with autistic traits. Scientific Reports, 2018, 8, 13675.	1.6	19
34	Common Defects of Spine Dynamics and Circuit Function in Neurodevelopmental Disorders: A Systematic Review of Findings From in Vivo Optical Imaging of Mouse Models. Frontiers in Neuroscience, 2018, 12, 412.	1.4	34
35	Network Dynamics Mediate Circadian Clock Plasticity. Neuron, 2017, 93, 441-450.	3.8	63
36	Distinct Defects in Spine Formation or Pruning in Two Gene Duplication Mouse Models of Autism. Neuroscience Bulletin, 2017, 33, 143-152.	1.5	25

#	Article	IF	CITATIONS
37	Unusual semiâ€extractability as a hallmark of nuclear bodyâ€associated architectural noncoding <scp>RNA</scp> s. EMBO Journal, 2017, 36, 1447-1462.	3.5	107
38	Behavioral and neuroanatomical analyses in a genetic mouse model of 2q13 duplication. Genes To Cells, 2017, 22, 436-451.	0.5	6
39	Rodent models of genetic and chromosomal variations in psychiatric disorders. Psychiatry and Clinical Neurosciences, 2017, 71, 508-517.	1.0	6
40	CHRONO integrates behavioral stress and epigenetic control of metabolism. Annals of Medicine, 2017, 49, 352-356.	1.5	11
41	Skeletal Site-specific Changes in Bone Mass in a Genetic Mouse Model for Human 15q11-13 Duplication Seen in Autism. Scientific Reports, 2017, 7, 9902.	1.6	17
42	Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Scientific Reports, 2017, 7, 1.	1.6	26,112
43	Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice. Science Advances, 2017, 3, e1603001.	4.7	64
44	Functional significance of rare neuroligin 1 variants found in autism. PLoS Genetics, 2017, 13, e1006940.	1.5	76
45	Translocated in liposarcoma regulates the distribution and function of mammalian enabled, a modulator of actin dynamics. FEBS Journal, 2016, 283, 1475-1487.	2.2	1
46	CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature, 2016, 537, 675-679.	13.7	268
47	Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. Journal of Cell Biology, 2016, 214, 817-830.	2.3	262
48	FUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice. Scientific Reports, 2016, 6, 35236.	1.6	17
49	Exome sequencing in the knockin mice generated using the CRISPR/Cas system. Scientific Reports, 2016, 6, 34703.	1.6	34
50	Autism spectrum disorder model mice: Focus on copy number variation and epigenetics. Science China Life Sciences, 2015, 58, 976-984.	2.3	8
51	Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Scientific Reports, 2015, 5, 14044.	1.6	18
52	DEC2–E4BP4 Heterodimer Represses the Transcriptional Enhancer Activity of the EE Element in the Per2 Promoter. Frontiers in Neurology, 2015, 6, 166.	1.1	7
53	Cerebellar associative sensory learning defects in five mouse autism models. ELife, 2015, 4, e06085.	2.8	120
54	Altered Microglia in the Amygdala Are Involved in Anxiety-related Behaviors of a Copy Number Variation Mouse Model of Autism. Journal of Nippon Medical School, 2015, 82, 92-99.	0.3	14

#	Article	IF	CITATIONS
55	FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2015, 3, 24.	2.4	82
56	Model mice for 15q11–13 duplication syndrome exhibit late-onset obesity and altered lipid metabolism. Human Molecular Genetics, 2015, 24, 4559-4572.	1.4	13
57	Transcriptome profiling of white adipose tissue in a mouse model for 15q duplication syndrome. Genomics Data, 2015, 5, 394-396.	1.3	5
58	Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proceedings of the United States of America, 2015, 112, E3911-9.	3.3	120
59	GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3920-9.	3.3	137
60	Neuroanatomical Phenotypes Are Consistent With Autismâ€Like Behavioral Phenotypes in the 15q11â€13 Duplication Mouse Model. Autism Research, 2015, 8, 545-555.	2.1	34
61	Serotonin Disturbance in Mouse Models of Autism Spectrum Disorders. Neuromethods, 2015, , 239-262.	0.2	3
62	A Novel Protein, CHRONO, Functions as a Core Component of the Mammalian Circadian Clock. PLoS Biology, 2014, 12, e1001839.	2.6	113
63	Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nature Communications, 2014, 5, 5586.	5.8	144
64	Genomic and genetic aspects of autism spectrum disorder. Biochemical and Biophysical Research Communications, 2014, 452, 244-253.	1.0	81
65	Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nature Communications, 2014, 5, 4742.	5.8	141
66	Helix-loop-helix Protein Id2 Stabilizes Mammalian Circadian Oscillation Under Constant Light Conditions. Zoological Science, 2013, 30, 1011-1018.	0.3	2
67	Nuclear Receptor-mediated Cell-autonomous Oscillatory Expression of the Circadian Transcription Factor, Neuronal PAS Domain Protein 2 (NPAS2). Journal of Biological Chemistry, 2013, 288, 36548-36553.	1.6	7
68	Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice. PLoS ONE, 2013, 8, e58884.	1.1	18
69	Differential Patterns in the Periodicity and Dynamics of Clock Gene Expression in Mouse Liver and Stomach. Chronobiology International, 2012, 29, 1300-1311.	0.9	19
70	Period Coding of Bmal1 Oscillators in the Suprachiasmatic Nucleus. Journal of Neuroscience, 2012, 32, 8900-8918.	1.7	63
71	Regulation of Zipcode Binding Protein 1 Transport Dynamics in Axons by Myosin Va. Journal of Neuroscience, 2012, 32, 15133-15141.	1.7	43
72	Animal Models of Psychiatric Disorders That Reflect Human Copy Number Variation. Neural Plasticity, 2012, 2012, 1-9.	1.0	26

#	Article	IF	CITATIONS
73	Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Scientific Reports, 2012, 2, 603.	1.6	231
74	Altered Serotonin, Dopamine and Norepinepherine Levels in 15q Duplication and Angelman Syndrome Mouse Models. PLoS ONE, 2012, 7, e43030.	1.1	37
75	The neurobiology of mouse models syntenic to human chromosome 15q. Journal of Neurodevelopmental Disorders, 2011, 3, 270-281.	1.5	24
76	Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 2010, 465, 223-226.	13.7	1,097
77	Decreased Exploratory Activity in a Mouse Model of 15q Duplication Syndrome; Implications for Disturbance of Serotonin Signaling. PLoS ONE, 2010, 5, e15126.	1.1	98
78	Genome-Wide Profiling of the Core Clock Protein BMAL1 Targets Reveals a Strict Relationship with Metabolism. Molecular and Cellular Biology, 2010, 30, 5636-5648.	1.1	134
79	Dual-Color Luciferase Mouse Directly Demonstrates Coupled Expression of Two Clock Genes. Biochemistry, 2010, 49, 8053-8061.	1.2	46
80	A humanoid mouse model of autism. Brain and Development, 2010, 32, 753-758.	0.6	13
81	The resetting of the circadian rhythm by Prostaglandin J ₂ is distinctly phaseâ€dependent. FEBS Letters, 2009, 583, 413-418.	1.3	8
82	<i>Fezf1</i> is required for penetration of the basal lamina by olfactory axons to promote olfactory development. Journal of Comparative Neurology, 2009, 515, 565-584.	0.9	39
83	A protein–protein interaction of stressâ€responsive myosin VI endowed to inhibit neural progenitor selfâ€replication with RNA binding protein, TLS, in murine hippocampus. Journal of Neurochemistry, 2009, 110, 1457-1468.	2.1	21
84	Abnormal Behavior in a Chromosome- Engineered Mouse Model for Human 15q11-13 Duplication Seen in Autism. Cell, 2009, 137, 1235-1246.	13.5	432
85	TLS interaction with NMDA R1 splice variant in retinal ganglion cell line RGC-5. Neuroscience Letters, 2009, 450, 163-166.	1.0	9
86	TLS-GFP cannot rescue mRNP formation near spines and spine phenotype in TLS-KO. NeuroReport, 2009, 20, 57-61.	0.6	9
87	Robust Food Anticipatory Activity in BMAL1-Deficient Mice. PLoS ONE, 2009, 4, e4860.	1.1	99
88	A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes. BMC Molecular Biology, 2008, 9, 1.	3.0	122
89	In Vivo Monitoring of Circadian Timing in Freely Moving Mice. Current Biology, 2008, 18, 381-385.	1.8	69
90	Of Mice and Men — Universality and Breakdown of Behavioral Organization. PLoS ONE, 2008, 3, e2050.	1.1	83

#	Article	IF	CITATIONS
91	The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks. BMC Molecular Biology, 2006, 7, 5.	3.0	44
92	Myosin-Va Facilitates the Accumulation of mRNA/Protein Complex in Dendritic Spines. Current Biology, 2006, 16, 2345-2351.	1.8	158
93	Molecular Mechanism of Cell-autonomous Circadian Gene Expression of Period2, a Crucial Regulator of the Mammalian Circadian Clock. Molecular Biology of the Cell, 2006, 17, 555-565.	0.9	61
94	The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nature Structural and Molecular Biology, 2005, 12, 441-448.	3.6	411
95	The RNA Binding Protein TLS Is Translocated to Dendritic Spines by mGluR5 Activation and Regulates Spine Morphology. Current Biology, 2005, 15, 587-593.	1.8	327
96	TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. Journal of Cell Science, 2005, 118, 5755-5765.	1.2	210
97	Acute Physical Stress Elevates Mouse Period1 mRNA Expression in Mouse Peripheral Tissues via a Glucocorticoid-responsive Element. Journal of Biological Chemistry, 2005, 280, 42036-42043.	1.6	251
98	Importin α/β Mediates Nuclear Transport of a Mammalian Circadian Clock Component, mCRY2, Together with mPER2, through a Bipartite Nuclear Localization Signal. Journal of Biological Chemistry, 2005, 280, 13272-13278.	1.6	35
99	Domain Architectures and Characterization of an RNA-binding Protein, TLS. Journal of Biological Chemistry, 2004, 279, 44834-44840.	1.6	146
100	The Receptor Tyrosine Kinase Ror2 Associates with and Is Activated by Casein Kinase Iϵ. Journal of Biological Chemistry, 2004, 279, 50102-50109.	1.6	85
101	Fez1 is layer-specifically expressed in the adult mouse neocortex. European Journal of Neuroscience, 2004, 20, 2909-2916.	1.2	51
102	Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Molecular Biology, 2004, 5, 18.	3.0	259
103	Synapse-Associated Protein 90/Postsynaptic Density-95-Associated Protein (SAPAP) is Expressed Differentially in Phencyclidine-Treated Rats and is Increased in the Nucleus Accumbens of Patients with Schizophrenia. Neuropsychopharmacology, 2003, 28, 1831-1839.	2.8	31
104	Regulation by Gonadal Steroids of the mRNA Encoding for a Type I Receptor for TGF-Î ² in the Female Rat Hypothalamus. Neuroendocrinology, 2002, 76, 1-7.	1.2	9
105	Restoration of circadian behavioural rhythms in a period nullDrosophilamutant (per01) by mammalian period homologuesmPer1andmPer2. Genes To Cells, 2002, 7, 163-171.	0.5	20
106	Inhibition of cardiac delayed rectifier K+ currents by an antisense oligodeoxynucleotide against IsK (minK) and over-expression of IsK mutant D77N in neonatal mouse hearts. Pflugers Archiv European Journal of Physiology, 2001, 442, 329-335.	1.3	20
107	Novel Nonsense Mutation in the Na+/HCO3 - Cotransporter Gene (SLC4A4) in a Patient with Permanent Isolated Proximal Renal Tubular Acidosis and Bilateral Glaucoma. Journal of the American Society of Nephrology: JASN, 2001, 12, 713-718.	3.0	110
108	A Putative Transcription Factor with Seven Zinc-Finger Motifs Identified in the Developing Suprachiasmatic Nucleus by the Differential Display PCR Method. Journal of Neuroscience, 1999, 19, 10176-10183.	1.7	7

#	Article	IF	CITATIONS
109	A mammalian ortholog ofDrosophila timeless, highly expressed in SCN and retina, forms a complex with mPER1. Genes To Cells, 1999, 4, 67-75.	0.5	69
110	A new mammalianperiodgene predominantly expressed in the suprachiasmatic nucleus. Genes To Cells, 1998, 3, 167-176.	0.5	212
111	A Dye Terminator Method for Automated DNA Sequencing Using Four Fluorescent Dideoxynucleosides and Thermal Cycling. Analytical Sciences, 1997, 13, 735-739.	0.8	2
112	Identification of novel homologues of mouse importin α, the α subunit of the nuclear pore-targeting complex, and their tissue-specific expression. FEBS Letters, 1997, 416, 30-34.	1.3	122
113	Assignment of the murine inwardly rectifying potassium channel IRK3 gene (Kcnj4) to the mouse Chromosome 15. Mammalian Genome, 1997, 8, 699-700.	1.0	1
114	Assignment of the Murine Inward Rectifier Potassium Channellrk2(Kir2.2) Gene to the Central Region of Mouse Chromosome 11. Genomics, 1996, 37, 270-272.	1.3	5
115	A Novel Ubiquitously Distributed Isoform of GIRK2 (GIRK2B) Enhances GIRK1 Expression of the G-Protein-Gated K+ Current inXenopusOocytes. Biochemical and Biophysical Research Communications, 1996, 218, 286-291.	1.0	56
116	Distinct localization of two serine–threonine kinase receptors for activin and TGF-β in the rat brain and down-regulation of type I activin receptor during peripheral nerve regeneration. Molecular Brain Research, 1996, 42, 263-271.	2.5	27
117	Molecular Basis of IaK Protein Regulation by Oxidation or Chelation. Journal of Biological Chemistry, 1995, 270, 3638-3641.	1.6	29
118	GH3 Pituitary Tumor Cells Contain Heteromeric Type I and Type II Receptor Complexes for Transforming Growth Factor β and Activin-A. Journal of Biological Chemistry, 1995, 270, 765-769.	1.6	51
119	A Novel ATP-dependent Inward Rectifier Potassium Channel Expressed Predominantly in Glial Cells. Journal of Biological Chemistry, 1995, 270, 16339-16346.	1.6	225
120	Molecular Characterization of a Type I Serine-Threonine Kinase Receptor for TGF-β and Activin in the Rat Pituitary Tumor Cell Line GH3. Experimental Cell Research, 1995, 216, 208-214.	1.2	28
121	Alterations of Gating Parameters by Neutral Substitutions of Transmembrane Leu52of Slow Potassium Channel. Annals of the New York Academy of Sciences, 1993, 707, 402-406.	1.8	3
122	Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hearing Research, 1991, 56, 168-172.	0.9	106
123	Immunohistochemical study of a rat membrane protein which induces a selective potassium permeation: Its localization in the apical membrane portion of epithelial cells. Journal of Membrane Biology, 1990, 113, 39-47.	1.0	97
124	Molecular cloning and sequence analysis of human genomic DNA encoding A novel membrane protein which exhibits a slowly activating potassium channel activity. Biochemical and Biophysical Research Communications, 1989, 161, 176-181.	1.0	137
125	Familial Insulin-Resistant Diabetes Mellitus without Acanthosis Nigricans or Androgenization. Pediatrics International, 1988, 30, 608-614.	0.2	0