Mark R Wiesner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electrionic equipment (WEEE). Environmental Science and Pollution Research, 2022, 29, 7772-7781.	5.3	10
2	From bottle to microplastics: Can we estimate how our plastic products are breaking down?. Science of the Total Environment, 2022, 814, 152460.	8.0	30
3	<i>In Vivo</i> Effects of Silver Nanoparticles on Development, Behavior, and Mitochondrial Function are Altered by Genetic Defects in Mitochondrial Dynamics. Environmental Science & amp; Technology, 2022, 56, 1113-1124.	10.0	14
4	A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework – A review. Chemosphere, 2022, 293, 133620.	8.2	20
5	Predicting emerging chemical content in consumer products using machine learning. Science of the Total Environment, 2022, , 154849.	8.0	0
6	Effect of pre-concentration on membrane solvent extraction process for the recovery of rare earth elements from dilute acidic leachate. Chemical Engineering Research and Design, 2022, 161, 210-220.	5.6	8
7	Exploring the design implications of bacteriophages in mixed suspensions by considering attachment and break-up. Water Research, 2022, 216, 118303.	11.3	5
8	Modeling insights into the role of support layer in the enhanced separation performance and stability of nanofiltration membrane. Journal of Membrane Science, 2022, 658, 120681.	8.2	9
9	A CNT/PVA film supported TFC membranes for improvement of mechanical properties and chemical cleaning stability: A new insight to an alternative to the polymeric support. Journal of Membrane Science, 2022, 658, 120753.	8.2	6
10	Relationship between Atomic Force Microscopy and Centrifugation Measurements for Dust Fractions Implicated in Solar Panel Soiling. Environmental Science & Technology, 2022, 56, 9604-9612.	10.0	6
11	The role of carboxylated cellulose nanocrystals placement in the performance of thin-film composite (TFC) membrane. Journal of Membrane Science, 2021, 617, 118581.	8.2	36
12	Pairing electrochemical impedance spectroscopy with conducting membranes for the in situ characterization of membrane fouling. Journal of Membrane Science, 2021, 618, 118680.	8.2	18
13	Nanoparticles as vectors for antibiotic resistance: The association of silica nanoparticles with environmentally relevant extracellular antibiotic resistance genes. Science of the Total Environment, 2021, 761, 143261.	8.0	14
14	Microbial vesicle-mediated communication: convergence to understand interactions within and between domains of life. Environmental Sciences: Processes and Impacts, 2021, 23, 664-677.	3.5	9
15	Effect of Dust Composition on the Reversibility of Photovoltaic Panel Soiling. Environmental Science & Technology, 2021, 55, 1984-1991.	10.0	7
16	MESOCOSM: A mesocosm database management system for environmental nanosafety. NanoImpact, 2021, 21, 100288.	4.5	8
17	Nanoplastics are neither microplastics nor engineered nanoparticles. Nature Nanotechnology, 2021, 16, 501-507.	31.5	377
18	Effect of solution chemistry on filtration performances and fouling potential of membrane processes for rare earth element recovery from red mud. Environmental Science and Pollution Research, 2021, 28, 61137-61150.	5.3	8

#	Article	IF	CITATIONS
19	Comprehensive characterization of secondary sources originating from Turkey in terms of rare earth elements and scandium. Science of the Total Environment, 2021, 777, 146033.	8.0	9
20	The NanoInformatics Knowledge Commons: Capturing spatial and temporal nanomaterial transformations in diverse systems. NanoImpact, 2021, 23, 100331.	4.5	5
21	Quantifying Mechanical Abrasion of MWCNT Nanocomposites Used in 3D Printing: Influence of CNT Content on Abrasion Products and Rate of Microplastic Production. Environmental Science & Technology, 2021, 55, 10332-10342.	10.0	14
22	Lack of Detectable Direct Effects of Silver and Silver Nanoparticles on Mitochondria in Mouse Hepatocytes. Environmental Science & Technology, 2021, 55, 11166-11175.	10.0	11
23	Surface modification of nanofiltration membranes with zwitterions to enhance antifouling properties during brackish water treatment: A new concept of a "buffer layer― Journal of Membrane Science, 2021, 637, 119651.	8.2	51
24	Discovery of Welcome Biopolymers in Surface Water: Improvements in Drinking Water Production. Environmental Science & Technology, 2021, 55, 2076-2086.	10.0	26
25	Impacts of ingested MWCNT-Embedded nanocomposites in Japanese medaka (<i>Oryzias latipes</i>). Nanotoxicology, 2021, 15, 1403-1422.	3.0	3
26	Application of Cobalt/Peracetic Acid to Degrade Sulfamethoxazole at Neutral Condition: Efficiency and Mechanisms. Environmental Science & amp; Technology, 2020, 54, 464-475.	10.0	261
27	Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling. Chemical Engineering Journal, 2020, 382, 122919.	12.7	78
28	Thin film nanocomposite nanofiltration hollow fiber membrane fabrication and characterization by electrochemical impedance spectroscopy. Polymer Bulletin, 2020, 77, 3411-3427.	3.3	7
29	Caveats to the use of MTT, neutral red, Hoechst and Resazurin to measure silver nanoparticle cytotoxicity. Chemico-Biological Interactions, 2020, 315, 108868.	4.0	30
30	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
31	Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media. Environmental Science & Technology, 2020, 54, 1250-1257.	10.0	13
32	Modeling bacteriophage-induced inactivation of Escherichia coli utilizing particle aggregation kinetics. Water Research, 2020, 171, 115438.	11.3	5
33	Exposure and Possible Risks of Engineered Nanomaterials in the Environment—Current Knowledge and Directions for the Future. Reviews of Geophysics, 2020, 58, e2020RG000710.	23.0	44
34	Risk Governance of Emerging Technologies Demonstrated in Terms of its Applicability to Nanomaterials. Small, 2020, 16, e2003303.	10.0	28
35	Separation of rare earth elements from mixed-metal feedstocks by micelle enhanced ultrafiltration with sodium dodecyl sulfate. Environmental Technology (United Kingdom), 2020, , 1-13.	2.2	8
36	Thermal Activation of Peracetic Acid in Aquatic Solution: The Mechanism and Application to Degrade Sulfamethoxazole. Environmental Science & Technology, 2020, 54, 14635-14645.	10.0	171

#	Article	IF	CITATIONS
37	The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem. Environmental Science: Nano, 2020, 7, 3167-3177.	4.3	9
38	Nanoparticle affinity for natural soils: a functional assay for determining particle attachment efficiency in complex systems. Environmental Science: Nano, 2020, 7, 1719-1729.	4.3	8
39	Comparative impact of <scp>SiO₂</scp> and <scp>TiO₂</scp> nanofillers on the performance of thinâ€film nanocomposite membranes. Journal of Applied Polymer Science, 2020, 137, 49382.	2.6	16
40	Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. ACS Nano, 2020, 14, 2966-2981.	14.6	49
41	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 2020, 18, 583-602.	4.1	74
42	High-performance nanofiltration membranes with a sandwiched layer and a surface layer for desalination and environmental pollutant removal. Science of the Total Environment, 2020, 743, 140766.	8.0	33
43	Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm. Environmental Science & Technology, 2020, 54, 1533-1544.	10.0	29
44	Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. Journal of Colloid and Interface Science, 2020, 571, 155-165.	9.4	47
45	Metal-polyphenol dual crosslinked graphene oxide membrane for desalination of textile wastewater. Desalination, 2020, 487, 114503.	8.2	64
46	Supramolecular-Based Regenerable Coating Layer of a Thin-Film Composite Nanofiltration Membrane for Simultaneously Enhanced Desalination and Antifouling Properties. ACS Applied Materials & Interfaces, 2019, 11, 21137-21149.	8.0	92
47	Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation. Chemosphere, 2019, 228, 35-43.	8.2	33
48	A novel approach for fouling mitigation in anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR) by integrating worm predation. Environment International, 2019, 127, 615-624.	10.0	10
49	Enhanced denitrifying phosphorus removal and mass balance in a worm reactor. Chemosphere, 2019, 226, 883-890.	8.2	6
50	Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Environmental Science & Technology, 2019, 53, 4490-4499.	10.0	88
51	Formulation and Validation of a Functional Assay-Driven Model of Nanoparticle Aquatic Transport. Environmental Science & Technology, 2019, 53, 3104-3109.	10.0	18
52	Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials. NanoImpact, 2019, 13, 66-69.	4.5	26
53	Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal. Chemical Engineering Journal, 2019, 358, 1519-1528.	12.7	183
54	Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Chemosphere, 2019, 217, 76-84.	8.2	88

ARTICLE IF CITATIONS Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: Assessing the impact of a 54 multi-component degradation scenario. Journal of Hazardous Materials, 2019, 372, 61-68. Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem. Environmental 56 10.0 56 Science & amp; Technology, 2018, 52, 4072-4078. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio) Tj ETQq1 1 0.784314 rgBT Over Tailoring the Core–Satellite Nanoassembly Architectures by Tuning Internanoparticle Electrostatic 58 3.5 17 Interactions. Langmuir, 2018, 34, 14617-14623. Incorporation of Cellulose Nanocrystals (CNCs) into the Polyamide Layer of Thin-Film Composite (TFC) Nanofiltration Membranes for Enhanced Separation Performance and Antifouling Properties. Environmental Science & Composition 2018, 52, 11178-11187. 10.0 185 Application of nanofiltration for Rare Earth Elements recovery from coal fly ash leachate: 60 12.7 72 Performance and cost evaluation. Chemical Engineering Journal, 2018, 349, 309-317. Hydrophilic and strengthened 3D reduced graphene oxide/nano-Fe₃O₄ hybrid hydrogel for enhanced adsorption and catalytic oxidation of typical pharmaceuticals. Environmental Science: Nano, 2018, 5, 1650-1660. Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem 62 3.8 30 experiment. Ecological Applications, 2018, 28, 1435-1449. Size-Based Differential Transport, Uptake, and Mass Distribution of Ceria (CeO₂) 10.0 Nanoparticles in Wetland Mesocosms. Environmental Science & amp; Technology, 2018, 52, 9768-9776. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nature 64 31.5 68 Nanotechnology, 2018, 13, 1072-1077. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO₂ 86 Photocatalysis. Langmuir, 2017, 33, 2770-2779. Comparison of Hydrophilicity and Mechanical Properties of Nanocomposite Membranes with Cellulose Nanocrystals and Carbon Nanotubes. Environmental Science & Amp; Technology, 2017, 51, 10.0 66 99 253-262. Uptake and Distribution of Silver in the Aquatic Plant <i>Landoltia punctata</i> (Duckweed) Exposed to Silver and Silver Sulfide Nanoparticles. Environmental Science & Amp; Technology, 2017, 51 10.0 70 4936-4943. Cellulose nanocrystal zero-valent iron nanocomposites for groundwater remediation. 68 4.3 43 Environmental Science: Nano, 2017, 4, 1294-1303. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The 69 Hofmeister Effects. Environmental Science & amp; Technology, 2017, 51, 828-837. Measuring Nanoparticle Attachment Efficiency in Complex Systems. Environmental Science & amp; 70 10.0 45 Technology, 2017, 51, 13288-13294. Modeling the Concentration of Volatile and Semivolatile Contaminants in Direct Contact Membrane 71 10.0 36 Distillation (DCMD) Product Water. Environmental Science & amp; Technology, 2017, 51, 13113-13121. Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron 72 10.0 14

MARK R WIESNER

Particles. Environmental Science & amp; Technology, 2017, 51, 9202-9209.

#	Article	IF	CITATIONS
73	Mechanistic Insights from Discrete Molecular Dynamics Simulations of Pesticide–Nanoparticle Interactions. Environmental Science & Technology, 2017, 51, 8396-8404.	10.0	22
74	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	10.0	191
75	Improved chlorine tolerance of a polyvinyl pyrrolidone-polysulfone membrane enabled by carboxylated carbon nanotubes. Water Research, 2016, 104, 497-506.	11.3	27
76	Nanoparticle Surface Affinity as a Predictor of Trophic Transfer. Environmental Science & Technology, 2016, 50, 6663-6669.	10.0	48
77	Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology, 2016, 10, 257-278.	3.0	492
78	A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Science of the Total Environment, 2016, 565, 889-901.	8.0	308
79	Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 2016, 305, 156-163.	12.4	305
80	Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals. Water Research, 2015, 69, 223-233.	11.3	476
81	Monte Carlo simulations of the transformation and removal of Ag, TiO2, and ZnO nanoparticles in wastewater treatment and land application of biosolids. Science of the Total Environment, 2015, 511, 535-543.	8.0	36
82	Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. Journal of Membrane Science, 2015, 492, 400-411.	8.2	121
83	A functional assay-based strategy for nanomaterial risk forecasting. Science of the Total Environment, 2015, 536, 1029-1037.	8.0	79
84	Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (<i>Medicago) Tj ETQq0 0 C</i>	rgBT/Ove	erlgçk 10 Tf 5
85	Heteroaggregation, transformation and fate of CeO2 nanoparticles inÂwastewater treatment. Environmental Pollution, 2015, 203, 122-129.	7.5	48
86	Cellulose Nanomaterials in Water Treatment Technologies. Environmental Science & Technology, 2015, 49, 5277-5287.	10.0	554
87	Experimental measurement and modelling of reactive species generation in TiO2 nanoparticle photocatalysis. Chemical Engineering Journal, 2015, 271, 260-268.	12.7	30
88	Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors. Environmental Engineering Science, 2015, 32, 647-655.	1.6	49
89	Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination. Journal of Hazardous Materials, 2015, 283, 80-88.	12.4	13

90Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial
cells. Particle and Fibre Toxicology, 2014, 11, 66.6.240

#	Article	IF	CITATIONS
91	Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver. Science of the Total Environment, 2014, 473-474, 685-691.	8.0	23
92	Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. Journal of Hazardous Materials, 2014, 264, 161-168.	12.4	76
93	Special Issue Introduction: Environmental Nanomaterials. Environmental Engineering Science, 2014, 31, 325-325.	1.6	Ο
94	Formation of Silver Nanoparticles in Visible Light-Illuminated Waters: Mechanism and Possible Impacts on the Persistence of AgNPs and Bacterial Lysis. Environmental Engineering Science, 2014, 31, 338-349.	1.6	29
95	Theory and Methodology for Determining Nanoparticle Affinity for Heteroaggregation in Environmental Matrices Using Batch Measurements. Environmental Engineering Science, 2014, 31, 421-427.	1.6	74
96	Fate of single walled carbon nanotubes in wetland ecosystems. Environmental Science: Nano, 2014, 1, 574-583.	4.3	47
97	Transformation of Pristine and Citrate-Functionalized CeO ₂ Nanoparticles in a Laboratory-Scale Activated Sludge Reactor. Environmental Science & Technology, 2014, 48, 7289-7296.	10.0	61
98	Emerging Contaminant or an Old Toxin in Disguise? Silver Nanoparticle Impacts on Ecosystems. Environmental Science & Technology, 2014, 48, 5229-5236.	10.0	138
99	Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (<i>Fundulus) Tj ETQq1 1 0</i>	.784314 rg 3.0	gBT_/Overlock
100	Aging of fullerene C60 nanoparticle suspensions in the presence of microbes. Water Research, 2014, 65, 282-289.	11.3	26
101	Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Science of the Total Environment, 2014, 485-486, 309-318.	8.0	60
102	Nanoparticle core properties affect attachment of macromolecule-coated nanoparticles to silica surfaces. Environmental Chemistry, 2014, 11, 257.	1.5	15
103	An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Scientific Reports, 2014, 4, 5608.	3.3	45
104	Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. Journal of Membrane Science, 2013, 447, 395-402.	8.2	116
105	Sulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity. Environmental Science & Technology, 2013, 47, 13440-13448.	10.0	364
106	Aquatic Biofouling Prevention by Electrically Charged Nanocomposite Polymer Thin Film Membranes. Environmental Science & Technology, 2013, 47, 2760-2768.	10.0	170
107	Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Science of the Total Environment, 2013, 449, 418-425.	8.0	112
108	A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology, 2013, 7, 389-401.	3.0	78

#	Article	IF	CITATIONS
109	Polymeric Coatings on Silver Nanoparticles Hinder Autoaggregation but Enhance Attachment to Uncoated Surfaces. Langmuir, 2012, 28, 4178-4186.	3.5	112
110	Proton-Conducting Composite Membranes Derived from Ferroxane-Polyvinyl Alcohol Complex. Environmental Engineering Science, 2012, 29, 124-132.	1.6	7
111	Theoretical Investigation on the Steric Interaction in Colloidal Deposition. Langmuir, 2012, 28, 15233-15245.	3.5	27
112	Detection, Characterization, and Abundance of Engineered Nanoparticles in Complex Waters by Hyperspectral Imagery with Enhanced Darkfield Microscopy. Environmental Science & Technology, 2012, 46, 10081-10088.	10.0	108
113	Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials. Aquatic Toxicology, 2012, 120-121, 59-66.	4.0	105
114	Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland. Environmental Science & Technology, 2012, 46, 7027-7036.	10.0	351
115	Theoretical investigation on the interaction between a soft particle and a rigid surface. Chemical Engineering Journal, 2012, 191, 297-305.	12.7	17
116	Estimating Production Data for Five Engineered Nanomaterials As a Basis for Exposure Assessment. Environmental Science & Technology, 2011, 45, 2562-2569.	10.0	350
117	Deposition of Silver Nanoparticles in Geochemically Heterogeneous Porous Media: Predicting Affinity from Surface Composition Analysis. Environmental Science & amp; Technology, 2011, 45, 5209-5215.	10.0	88
118	More than the lons: The Effects of Silver Nanoparticles on <i>Lolium multiflorum</i> . Environmental Science & Technology, 2011, 45, 2360-2367.	10.0	494
119	A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus Physique, 2011, 12, 659-668.	0.9	28
120	Hydrophobic Interactions Increase Attachment of Gum Arabic- and PVP-Coated Ag Nanoparticles to Hydrophobic Surfaces. Environmental Science & Technology, 2011, 45, 5988-5995.	10.0	134
121	Meditations on the Ubiquity and Mutability of Nano-Sized Materials in the Environment. ACS Nano, 2011, 5, 8466-8470.	14.6	77
122	Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. Journal of Nanoparticle Research, 2011, 13, 2675-2687.	1.9	83
123	Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size. Journal of Nanoparticle Research, 2011, 13, 5121-5127.	1.9	29
124	Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 2011, 272, 46-50.	8.2	221
125	Polymeric Membranes from Colloidal Templates with Tunable Morphology. Macromolecular Reaction Engineering, 2010, 4, 445-452.	1.5	5
126	Theoretical Framework for Nanoparticle Reactivity as a Function of Aggregation State. Langmuir, 2010. 26. 11170-11175.	3.5	70

8

#	Article	IF	CITATIONS
127	Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic Toxicology, 2010, 100, 140-150.	4.0	327
128	Concurrent Aggregation and Deposition of TiO ₂ Nanoparticles in a Sandy Porous Media. Environmental Science & Technology, 2010, 44, 4897-4902.	10.0	197
129	Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 2009, 4, 634-641.	31.5	1,586
130	Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environmental Pollution, 2009, 157, 1127-1133.	7.5	473
131	Comparative Photoactivity and Antibacterial Properties of C ₆₀ Fullerenes and Titanium Dioxide Nanoparticles. Environmental Science & Technology, 2009, 43, 4355-4360.	10.0	410
132	Decreasing Uncertainties in Assessing Environmental Exposure, Risk, and Ecological Implications of Nanomaterials. Environmental Science & amp; Technology, 2009, 43, 6458-6462.	10.0	311
133	CeO ₂ nanoparticles induce DNA damage towards human dermal fibroblasts <i>in vitro</i> . Nanotoxicology, 2009, 3, 161-171.	3.0	179
134	Comparative Toxicity of C ₆₀ Aggregates toward Mammalian Cells: Role of Tetrahydrofuran (THF) Decomposition. Environmental Science & Technology, 2009, 43, 6378-6384.	10.0	61
135	Heparin Forms Macromolecular Complexes with Protamine and Lysozyme Blood, 2009, 114, 1316-1316.	1.4	0
136	Transport and Retention of Colloidal Aggregates of C ₆₀ in Porous Media:  Effects of Organic Macromolecules, Ionic Composition, and Preparation Method. Environmental Science & Technology, 2007, 41, 7396-7402.	10.0	176
137	Assessing the Risks of Manufactured Nanomaterials. Environmental Science & Technology, 2006, 40, 4336-4345.	10.0	1,018
138	Aggregation and Deposition Characteristics of Fullerene Nanoparticles in Aqueous Systems. Journal of Nanoparticle Research, 2005, 7, 545-553.	1.9	316
139	Physical and Transport Properties of Bentonite-Cement Composites: A New Material for In Situ Capping of Contaminated Underwater Sediments. Environmental Engineering Science, 2005, 22, 578-590.	1.6	4
140	Laboratory Assessment of the Mobility of Nanomaterials in Porous Media. Environmental Science & Technology, 2004, 38, 5164-5169.	10.0	480
141	Morphology of Particle Deposits. Journal of Environmental Engineering, ASCE, 1999, 125, 1124-1132.	1.4	44
142	Peer Reviewed: The Promise of Membrane Technology. Environmental Science & Technology, 1999, 33, 360A-366A.	10.0	96
143	Kinetics of aggregate formation in rapid mix. Water Research, 1992, 26, 379-387.	11.3	85
144	Persistence and Environmental Relevance of Extracellular Antibiotic Resistance Genes: Regulation by Nanoparticle Association. Environmental Engineering Science, 0, , .	1.6	6

9