Malin Wickström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Science, 2011, 102, 501-508.	3.9	293
2	Wnt/\hat{l}^2 -catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nature Communications, 2015, 6, 8904.	12.8	177
3	Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Frontiers in Molecular Neuroscience, 2019, 12, 9.	2.9	166
4	Pharmacological profiling of disulfiram using human tumor cell lines and human tumor cells from patients. Biochemical Pharmacology, 2007, 73, 25-33.	4.4	99
5	Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2013, 132, 1516-1524.	5.1	99
6	Cytotoxic Effects of Cardiac Glycosides in Colon Cancer Cells, Alone and in Combination with Standard Chemotherapeutic Drugs. Journal of Natural Products, 2009, 72, 1969-1974.	3.0	91
7	Melflufen - a peptidase-potentiated alkylating agent in clinical trials. Oncotarget, 2017, 8, 66641-66655.	1.8	65
8	Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2011, 19, 2659-2665.	3.0	61
9	Celecoxib Prevents Neuroblastoma Tumor Development and Potentiates the Effect of Chemotherapeutic Drugs In vitro and In vivo. Clinical Cancer Research, 2007, 13, 1036-1044.	7.0	56
10	Effects of small molecule inhibitors of PI3K/Akt/mTOR signaling on neuroblastoma growth <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2011, 129, 2958-2965.	5.1	54
11	Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacological Research, 2018, 131, 164-176.	7.1	53
12	Rho-associated kinase is a therapeutic target in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6603-E6612.	7.1	52
13	The alkylating prodrug J1 can be activated by aminopeptidase N, leading to a possible target directed release of melphalan. Biochemical Pharmacology, 2010, 79, 1281-1290.	4.4	48
14	Image-Based Screening for the Identification of Novel Proteasome Inhibitors. Journal of Biomolecular Screening, 2007, 12, 203-210.	2.6	43
15	Activity of Hydrolytic Enzymes in Tumour Cells is a Determinant for Anti-tumour Efficacy of the Melphalan Containing ProdrugJ1. Journal of Drug Targeting, 2003, 11, 355-363.	4.4	41
16	Protective Role of Humanin on Bortezomib-Induced Bone Growth Impairment in Anticancer Treatment. Journal of the National Cancer Institute, 2014, 106, djt459.	6.3	41
17	Inhibition of chemerin/CMKLR1 axis in neuroblastoma cells reduces clonogenicity and cell viability <i>in vitro</i> and impairs tumor growth <i>in vivo</i> . Oncotarget, 2017, 8, 95135-95151.	1.8	40
18	The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo. Molecular Cancer Therapeutics, 2007, 6, 2409-2417.	4.1	38

Malin WickstrĶm

#	Article	IF	CITATIONS
19	The novel alkylating prodrug J1: diagnosis directed activity profile ex vivo and combination analyses in vitro. Investigational New Drugs, 2008, 26, 195-204.	2.6	36
20	Simvastatin induces apoptosis in human breast cancer cells in a NFκB-dependent manner and abolishes the anti-apoptotic signaling of TF/FVIIa and TF/FVIIa/FXa. Thrombosis Research, 2008, 122, 191-202.	1.7	34
21	In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues. Cancer Chemotherapy and Pharmacology, 2012, 69, 697-707.	2.3	33
22	The novel alkylating prodrug melflufen (J1) inhibits angiogenesis in vitro and in vivo. Biochemical Pharmacology, 2013, 86, 888-895.	4.4	33
23	Metronomic scheduling of imatinib abrogates clonogenicity of neuroblastoma cells and enhances their susceptibility to selected chemotherapeutic drugs <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2009, 124, 1227-1234.	5.1	30
24	Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain. Oncotarget, 2017, 8, 34111-34127.	1.8	27
25	Significant cytotoxic activity <i>in vitro</i> of the EGFR tyrosine kinase inhibitor gefitinib in acute myeloblastic leukaemia. European Journal of Haematology, 2008, 81, 344-353.	2.2	26
26	Targeting Fibroblast Growth Factor Receptor (FGFR) and Phosphoinositide 3-kinase (PI3K) Signaling Pathways in Medulloblastoma Cell Lines. Anticancer Research, 2020, 40, 53-66.	1.1	25
27	Synthesis and Characterization of a Multi Ringâ€Fused 2â€Pyridoneâ€Based Fluorescent Scaffold. European Journal of Organic Chemistry, 2010, 2010, 6171-6178.	2.4	20
28	Planar cell polarity gene expression correlates with tumor cell viability and prognostic outcome in neuroblastoma. BMC Cancer, 2016, 16, 259.	2.6	20
29	Phenotype-Based Screening of Mechanistically Annotated Compounds in Combination with Gene Expression and Pathway Analysis Identifies Candidate Drug Targets in a Human Squamous Carcinoma Cell Model. Journal of Biomolecular Screening, 2006, 11, 457-468.	2.6	18
30	In vitro and in vivo activity of melflufen (J1) in lymphoma. BMC Cancer, 2016, 16, 263.	2.6	18
31	Phenotype-based drug screening in primary ovarian carcinoma cultures identifies intracellular iron depletion as a promising strategy for cancer treatment. Biochemical Pharmacology, 2011, 82, 139-147.	4.4	16
32	Effects of PI3K and FGFR inhibitors alone and in combination, and with/without cytostatics in childhood neuroblastoma cell lines. International Journal of Oncology, 2021, 58, 211-225.	3.3	16
33	Alternative Cytotoxic Effects of the Postulated IGF-IR Inhibitor Picropodophyllin <i>In Vitro</i> . Molecular Cancer Therapeutics, 2013, 12, 1526-1536.	4.1	15
34	Inhibition of Rho-Associated Kinase Suppresses Medulloblastoma Growth. Cancers, 2020, 12, 73.	3.7	10
35	The impact of S6K1 kinase on neuroblastoma cell proliferation is independent of GLI1 signaling. BMC Cancer, 2014, 14, 600.	2.6	9
36	In�vitro antitumor effects of FGFR and PI3K inhibitors on human papillomavirus positive and negative tonsillar and base of tongue cancer cell lines. Oncology Letters, 2019, 18, 6249-6260.	1.8	9

MALIN WICKSTRöM

#	Article	IF	CITATIONS
37	Screening for phenotype selective activity in multidrug resistant cells identifies a novel tubulin active agent insensitive to common forms of cancer drug resistance. BMC Cancer, 2013, 13, 374.	2.6	7
38	Wingless/β-catenin signaling as a modulator of chemoresistance in cancer. Molecular and Cellular Oncology, 2016, 3, e1131356.	0.7	7
39	MYCMI-7: A Small MYC-Binding Compound that Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner. Cancer Research Communications, 2022, 2, 182-201.	1.7	6
40	SYK Inhibition Potentiates the Effect of Chemotherapeutic Drugs on Neuroblastoma Cells in Vitro. Cancers, 2019, 11, 202.	3.7	5
41	GIT1 protects against breast cancer growth through negative regulation of Notch. Nature Communications, 2022, 13, 1537.	12.8	5
42	Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound. Cell Death and Disease, 2021, 12, 914.	6.3	3