Miltos Tsiantis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1029078/publications.pdf Version: 2024-02-01

Μίιτος Τειλνιτίς

#	Article	IF	CITATIONS
1	Cytokinin promotes growth cessation in the Arabidopsis root. Current Biology, 2022, 32, 1974-1985.e3.	3.9	20
2	The annotation and analysis of complex 3D plant organs using 3DCoordX. Plant Physiology, 2022, 189, 1278-1295.	4.8	4
3	Using positional information to provide context for biological image analysis with MorphoGraphX 2.0. ELife, 2022, 11, .	6.0	41
4	Fineâ€scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. New Phytologist, 2021, 229, 3587-3601.	7.3	18
5	Gene expression evolution in pattern-triggered immunity within <i>Arabidopsis thaliana</i> and across Brassicaceae species. Plant Cell, 2021, 33, 1863-1887.	6.6	27
6	Adjustment of the PIF7â€HFR1 transcriptional module activity controls plant shade adaptation. EMBO Journal, 2021, 40, e104273.	7.8	32
7	Phyllotaxis: is the golden angle optimal for light capture?. New Phytologist, 2020, 225, 499-510.	7.3	33
8	A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form. Current Biology, 2020, 30, 4857-4868.e6.	3.9	69
9	Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores. Current Biology, 2020, 30, 2815-2828.e8.	3.9	48
10	CRISPR/Cas9-Mediated Mutagenesis of RCO in Cardamine hirsuta. Plants, 2020, 9, 268.	3.5	1
11	Accurate and versatile 3D segmentation of plant tissues at cellular resolution. ELife, 2020, 9, .	6.0	155
12	Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell, 2019, 31, tpc.00275.2019.	6.6	23
13	A Growth-Based Framework for Leaf Shape Development and Diversity. Cell, 2019, 177, 1405-1418.e17.	28.9	183
14	Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytologist, 2019, 222, 1638-1651.	7.3	123
15	Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity. Current Biology, 2019, 29, 4183-4192.e6.	3.9	21
16	Differential spatial distribution of miR165/6 determines variability in plant root anatomy. Development (Cambridge), 2018, 145, .	2.5	22
17	LMI1 homeodomain protein regulates organ proportions by spatial modulation of endoreduplication. Genes and Development, 2018, 32, 1361-1366.	5.9	29
18	Why plants make puzzle cells, and how their shape emerges. ELife, 2018, 7, .	6.0	208

MILTOS TSIANTIS

#	Article	IF	CITATIONS
19	Gene networks and the evolution of plant morphology. Current Opinion in Plant Biology, 2018, 45, 82-87.	7.1	37
20	Using mustard genomes to explore the genetic basis of evolutionary change. Current Opinion in Plant Biology, 2017, 36, 119-128.	7.1	25
21	Genomic Rearrangements in <i>Arabidopsis</i> Considered as Quantitative Traits. Genetics, 2017, 205, 1425-1441.	2.9	21
22	Enhancer evolution and the origins of morphological novelty. Current Opinion in Genetics and Development, 2017, 45, 115-123.	3.3	92
23	Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity. Genes and Development, 2016, 30, 2370-2375.	5.9	56
24	Cardamine hirsuta: a comparative view. Current Opinion in Genetics and Development, 2016, 39, 1-7.	3.3	20
25	The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nature Plants, 2016, 2, 16167.	9.3	90
26	Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell, 2016, 166, 222-233.	28.9	128
27	From limbs to leaves: common themes in evolutionary diversification of organ form. Frontiers in Genetics, 2015, 6, 284.	2.3	11
28	Interspecies Gene Transfer as a Method for Understanding the Genetic Basis for Evolutionary Change: Progress, Pitfalls, and Prospects. Frontiers in Plant Science, 2015, 6, 1135.	3.6	6
29	MorphoGraphX: A platform for quantifying morphogenesis in 4D. ELife, 2015, 4, 05864.	6.0	389
30	Alternate wiring of a <i>KNOXI</i> genetic network underlies differences in leaf development of <i>A. thaliana</i> and <i>C. hirsuta</i> . Genes and Development, 2015, 29, 2391-2404.	5.9	68
31	Heterochrony underpins natural variation in <i>Cardamine hirsuta</i> leaf form. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10539-10544.	7.1	60
32	<i>Cardamine hirsuta</i> : a versatile genetic system for comparative studies. Plant Journal, 2014, 78, 1-15.	5.7	78
33	Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene. Science, 2014, 343, 780-783.	12.6	269
34	A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nature Genetics, 2008, 40, 1136-1141.	21.4	297
35	The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature Genetics, 2006, 38, 942-947.	21.4	343