Arash Bashirullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1029074/publications.pdf

Version: 2024-02-01

840776 888059 18 585 11 17 citations h-index g-index papers 21 21 21 629 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nature Neuroscience, 2009, 12, 1497-1505.	14.8	121
2	Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Developmental Biology, 2003, 259, 1-8.	2.0	110
3	Translational Control by the DEAD Box RNA Helicase belle Regulates Ecdysone-Triggered Transcriptional Cascades. PLoS Genetics, 2012, 8, e1003085.	3.5	52
4	A novel superfamily of bridge-like lipid transfer proteins. Trends in Cell Biology, 2022, 32, 962-974.	7.9	44
5	Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death. Journal of Cell Biology, 2007, 178, 85-92.	5.2	41
6	A Genetic Screen Identifies New Regulators of Steroid-Triggered Programmed Cell Death in Drosophila. Genetics, 2008, 180, 269-281.	2.9	32
7	Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nature Communications, 2017, 8, 603.	12.8	31
8	Hobbit regulates intracellular trafficking to drive insulin-dependent growth during <i>Drosophila < /i> development. Development (Cambridge), 2018, 145, .</i>	2.5	24
9	INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila. Developmental Biology, 2014, 387, 229-239.	2.0	22
10	A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development. Developmental Biology, 2014, 386, 34-41.	2.0	22
11	The Hob proteins are novel and conserved lipid-binding proteins at ER–PM contact sites. Journal of Cell Science, 2022, 135, .	2.0	19
12	A novel function for Rab1 and Rab11 during secretory granule maturation. Journal of Cell Science, 2021, 134, .	2.0	16
13	Genetic Control of Specificity to Steroid-Triggered Responses in <i>Drosophila</i> . Genetics, 2014, 196, 767-780.	2.9	15
14	Mistargeting of secretory cargo in retromer-deficient cells. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	14
15	HDAC Inhibitors Disrupt Programmed Resistance to Apoptosis During Drosophila Development. G3: Genes, Genomes, Genetics, 2017, 7, 1985-1993.	1.8	10
16	Rapid Recombination Mapping for High-Throughput Genetic Screens in Drosophila. G3: Genes, Genomes, Genetics, 2013, 3, 2313-2319.	1.8	5
17	Reconsidering the Passive Diffusion Model of Steroid Hormone Cellular Entry. Developmental Cell, 2018, 47, 261-262.	7.0	5

The Hob Proteins: Putative, Novel Lipid Transfer Proteins at ER-PM Contact Sites. Contact (Thousand) Tj ETQq0 0 0 rgBT /Overlock 10 Tf