Amita Sehgal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1028923/publications.pdf

Version: 2024-02-01

76326 64796 7,320 93 40 79 citations h-index g-index papers 104 104 104 5816 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Consolidation of sleep-dependent appetitive memory is mediated by a sweet-sensing circuit. Journal of Neuroscience, 2022, , JN-RM-0106-22.	3.6	3
2	Availability of food determines the need for sleep in memory consolidation. Nature, 2021, 589, 582-585.	27.8	51
3	Manipulations of the olfactory circuit highlight the role of sensory stimulation in regulating sleep amount. Sleep, 2021, 44, .	1.1	9
4	A circadian clock regulates efflux by the blood-brain barrier in mice and human cells. Nature Communications, 2021, 12, 617.	12.8	63
5	Time-of-day specificity of anticancer drugs may be mediated by circadian regulation of the cell cycle. Science Advances, 2021, 7, .	10.3	38
6	Loss of circadian protection against influenza infection in adult mice exposed to hyperoxia as neonates. ELife, $2021,10,10$	6.0	15
7	<i>Drosophila</i> clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
8	Short and long sleeping mutants reveal links between sleep and macroautophagy. ELife, 2021, 10, .	6.0	22
9	Circadian Rhythms, Disease and Chronotherapy. Journal of Biological Rhythms, 2021, 36, 503-531.	2.6	55
10	The 2020 Pittendrigh/Aschoff Lecture: My Circadian Journey. Journal of Biological Rhythms, 2021, 36, 84-96.	2.6	1
11	Monitoring Electrical Activity in Drosophila Circadian Output Neurons. Methods in Molecular Biology, 2021, 2130, 221-232.	0.9	1
12	<i>Hugin</i> ⁺ neurons provide a link between sleep homeostat and circadian clock neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
13	Molecular and circuit mechanisms mediating circadian clock output in the <i>Drosophila</i> brain. European Journal of Neuroscience, 2020, 51, 268-281.	2.6	59
14	RNA Splicing Factor Mutations That Cause Retinitis Pigmentosa Result in Circadian Dysregulation. Journal of Biological Rhythms, 2020, 35, 72-83.	2.6	5
15	The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annual Review of Cell and Developmental Biology, 2020, 36, 469-509.	9.4	4
16	Anandamide Metabolites Protect against Seizures through the TRP Channel Water Witch in Drosophila melanogaster. Cell Reports, 2020, 31, 107710.	6.4	12
17	Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metabolism, 2020, 32, 767-785.e7.	16.2	64
18	Circadian and Sleep Metabolomics Across Species. Journal of Molecular Biology, 2020, 432, 3578-3610.	4.2	34

#	Article	IF	CITATIONS
19	The Glial Perspective on Sleep and Circadian Rhythms. Annual Review of Neuroscience, 2020, 43, 119-140.	10.7	31
20	AANAT1 functions in astrocytes to regulate sleep homeostasis. ELife, 2020, 9, .	6.0	24
21	Splicing the Clock to Maintain and Entrain Circadian Rhythms. Journal of Biological Rhythms, 2019, 34, 584-595.	2.6	13
22	The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation. Scientific Reports, 2019, 9, 11883.	3.3	23
23	A sleep-inducing gene, <i>nemuri</i> , links sleep and immune function in <i>Drosophila</i> . Science, 2019, 363, 509-515.	12.6	128
24	Regulation of the Blood–Brain Barrier by Circadian Rhythms and Sleep. Trends in Neurosciences, 2019, 42, 500-510.	8.6	121
25	G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biology, 2019, 17, e3000228.	5.6	71
26	Misregulation of Drosophila Myc Disrupts Circadian Behavior and Metabolism. Cell Reports, 2019, 29, 1778-1788.e4.	6.4	5
27	A Circadian Clock in the Blood-Brain Barrier Regulates Xenobiotic Efflux. Cell, 2018, 173, 130-139.e10.	28.9	162
28	Wolbachia affects sleep behavior in Drosophila melanogaster. Journal of Insect Physiology, 2018, 107, 81-88.	2.0	24
29	Circadian- and Light-driven Metabolic Rhythms in <i>Drosophila melanogaster</i> Biological Rhythms, 2018, 33, 126-136.	2.6	24
30	Cold Temperatures Fire up Circadian Neurons. Cell Metabolism, 2018, 27, 951-953.	16.2	5
31	A Conserved Circadian Function for the Neurofibromatosis 1 Gene. Cell Reports, 2018, 22, 3416-3426.	6.4	42
32	Genetic Mechanisms Underlying Sleep. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 57-61.	1.1	3
33	Circadian and Sleep Circuits Ring Together. Neuron, 2018, 100, 514-516.	8.1	4
34	Asymmetric vasopressin signaling spatially organizes the master circadian clock. Journal of Comparative Neurology, 2018, 526, 2048-2067.	1.6	19
35	Spliceosome factors target timeless (tim) mRNA to control clock protein accumulation and circadian behavior in Drosophila. ELife, 2018, 7, .	6.0	30
36	Endocytosis at the Drosophila blood–brain barrier as a function for sleep. ELife, 2018, 7, .	6.0	72

#	Article	IF	Citations
37	Structural Plasticity Analysis of Drosophila Sleep Circuit After Thermogenetic Sleep Deprivation. FASEB Journal, 2018, 32, lb538.	0.5	O
38	Human and rat gut microbiome composition is maintained following sleep restriction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1564-E1571.	7.1	106
39	Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harbor Perspectives in Biology, 2017, 9, a027730.	5.5	118
40	The Drosophila circuitry of sleep–wake regulation. Current Opinion in Neurobiology, 2017, 44, 243-250.	4.2	98
41	Circadian Rhythms and Sleep in <i>Drosophila melanogaster</i> . Genetics, 2017, 205, 1373-1397.	2.9	331
42	Physiology Flies with Time. Cell, 2017, 171, 1232-1235.	28.9	40
43	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
44	A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity. Current Biology, 2017, 27, 1915-1927.e5.	3.9	70
45	Neural clocks and Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue. ELife, $2016, 5, .$	6.0	61
46	Circadian and feeding cues integrate to drive rhythms of physiology in <i>Drosophila</i> insulin-producing cells. Genes and Development, 2016, 30, 2596-2606.	5.9	102
47	Changes in Female <i>Drosophila</i> Sleep following Mating Are Mediated by SPSN-SAG Neurons. Journal of Biological Rhythms, 2016, 31, 551-567.	2.6	37
48	Tumors set time. Science, 2016, 353, 987-988.	12.6	2
49	Caffeine promotes wakefulness via dopamine signaling in Drosophila. Scientific Reports, 2016, 6, 20938.	3.3	68
50	Genetic Dissociation of Daily Sleep and Sleep Following Thermogenetic Sleep Deprivation in <i>Drosophila</i> . Sleep, 2016, 39, 1083-1095.	1.1	26
51	Circadian Rhythms, Sleep, and Disorders of Aging. Trends in Endocrinology and Metabolism, 2016, 27, 192-203.	7.1	247
52	Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila. Cell Metabolism, 2016, 23, 143-154.	16.2	139
53	Context-specific comparison of sleep acquisition systems in <i>Drosophila</i> . Biology Open, 2015, 4, 1558-1568.	1.2	54
54	Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior. PLoS Genetics, 2015, 11, e1005655.	3.5	33

#	Article	lF	CITATIONS
55	Sleep deprivation suppresses aggression in Drosophila. ELife, 2015, 4, e07643.	6.0	55
56	KPNB1 mediates PER/CRY nuclear translocation and circadian clock function. ELife, 2015, 4, .	6.0	37
57	Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2569-2574.	7.1	121
58	Heating and cooling the Drosophila melanogaster clock. Current Opinion in Insect Science, 2015, 7, 71-75.	4.4	17
59	Drosophila TIM Binds Importin $\hat{i}\pm 1$, and Acts as an Adapter to Transport PER to the Nucleus. PLoS Genetics, 2015, 11, e1004974.	3.5	72
60	Temperature Oscillations Drive Cycles in the Activity of MMP-2,9 Secreted by a Human Trabecular Meshwork Cell Line. Investigative Ophthalmology and Visual Science, 2015, 56, 1396-1405.	3.3	7
61	Independent Effects of \hat{I}^3 -Aminobutyric Acid Transaminase (GABAT) on Metabolic and Sleep Homeostasis. Journal of Biological Chemistry, 2015, 290, 20407-20416.	3.4	29
62	Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Research, 2015, 25, 1836-1847.	5.5	99
63	Anaplastic Lymphoma Kinase Acts in the Drosophila Mushroom Body to Negatively Regulate Sleep. PLoS Genetics, 2015, 11, e1005611.	3.5	29
64	An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila. Nature Communications, 2014, 5, 5697.	12.8	49
65	Monoamines and sleep in Drosophila Behavioral Neuroscience, 2014, 128, 264-272.	1.2	64
66	Identification of a Circadian Output Circuit for Rest:Activity Rhythms in Drosophila. Cell, 2014, 157, 689-701.	28.9	201
67	WIDE AWAKE Mediates the Circadian Timing of Sleep Onset. Neuron, 2014, 82, 151-166.	8.1	128
68	A Critical Period of Sleep for Development of Courtship Circuitry and Behavior in <i>Drosophila</i> Science, 2014, 344, 269-274.	12.6	153
69	Speed control: cogs and gears that drive the circadian clock. Trends in Neurosciences, 2012, 35, 574-585.	8.6	78
70	Genetics of Sleep and Sleep Disorders. Cell, 2011, 146, 194-207.	28.9	345
71	The Circadian Clock Interacts with Metabolic Physiology to Influence Reproductive Fitness. Cell Metabolism, 2011, 13, 639-654.	16.2	149
72	Identification of a Neural Circuit that Underlies the Effects of Octopamine on Sleep:Wake Behavior. Neuron, 2010, 65, 670-681.	8.1	238

#	Article	IF	CITATIONS
73	Ac-ing the Clock. Neuron, 2008, 57, 8-10.	8.1	9
74	Regulation of Feeding and Metabolism by Neuronal and Peripheral Clocks in Drosophila. Cell Metabolism, 2008, 8, 289-300.	16.2	255
75	Hormonal Rhythms., 2005,, 231-253.		2
76	Human Circadian Rhythms. , 2005, , 255-269.		3
77	Genetic and Molecular Approaches Used to Analyze Rhythms. , 2005, , 17-29.		0
78	Drosophila Melanogaster: A Model System for Molecular Chronobiology. , 2005, , 31-74.		4
79	Molecular Analysis of Circadian Rhythms: Nonmammalian Vertebrates., 2005,, 75-92.		0
80	Genetic Basis for Circadian Rhythms in Mammals. , 2005, , 93-140.		2
81	Circadian Rhythms in Cyanobacteria. , 2005, , 141-170.		0
82	Physiological and Molecular Characteristics of Plant Circadian Clocks., 2005,, 185-209.		0
83	Multiple Oscillators., 2005,, 211-229.		О
84	Molecular Analysis of Circadian Rhythms in Neurospora. , 2005, , 171-184.		0
85	General Concepts. , 2005, , 1-16.		0
86	Circadian Control of Eclosion. Current Biology, 2003, 13, 526-533.	3.9	144
87	Molecular Components of the Circadian System in Drosophila. Annual Review of Physiology, 2001, 63, 729-755.	13.1	199
88	Regulation of the cycling oftimeless (tim) RNA. Journal of Neurobiology, 2001, 47, 161-175.	3.6	32
89	A Circadian Output in Drosophila Mediated by Neurofibromatosis-1 and Ras/MAPK. Science, 2001, 293, 2251-2256.	12.6	205
90	Rest in Drosophila Is a Sleep-like State. Neuron, 2000, 25, 129-138.	8.1	876

AMITA SEHGAL

#	Article	IF	CITATIONS
91	Conserved Regions of the timeless (tim) Clock Gene in Drosophila Analyzed Through Phylogenetic and Functional Studies. Genetics, 1998, 148, 815-825.	2.9	73
92	Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science, 1994, 263, 1603-1606.	12.6	593
93	The Kinetics and (Dys)kinetics of Cancer Chronotherapy. Cancer Research, 0, , OF1-OF4.	0.9	1