
Ruben Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1027530/publications.pdf Version: 2024-02-01

DUREN SMITH

#	Article	IF	CITATIONS
1	The <i>BIN1</i> rs744373 Alzheimer's disease risk SNP is associated with faster Aβâ€associated tau accumulation and cognitive decline. Alzheimer's and Dementia, 2022, 18, 103-115.	0.8	24
2	Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease. JAMA Neurology, 2022, 79, 149.	9.0	66
3	Tau PET Imaging in Neurodegenerative Disorders. Journal of Nuclear Medicine, 2022, 63, 20S-26S.	5.0	26
4	Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer's disease. Brain, 2021, 144, 310-324.	7.6	123
5	Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease. JAMA Neurology, 2021, 78, 149.	9.0	176
6	The impact of demographic, clinical, genetic, and imaging variables on tau PET status. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2245-2258.	6.4	27
7	Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer's disease. Translational Psychiatry, 2021, 11, 76.	4.8	78
8	Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Brain, 2021, 144, 2771-2783.	7.6	78
9	Four distinct trajectories of tau deposition identified in Alzheimer's disease. Nature Medicine, 2021, 27, 871-881.	30.7	354
10	A multicenter comparison of [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2295-2305.	6.4	41
11	Soluble Pâ€ŧau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Molecular Medicine, 2021, 13, e14022.	6.9	90
12	Tau PET correlates with different Alzheimer's diseaseâ€related features compared to CSF and plasma pâ€tau biomarkers. EMBO Molecular Medicine, 2021, 13, e14398.	6.9	58
13	Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer's disease. Brain, 2021, 144, 3505-3516.	7.6	198
14	Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease. JAMA Neurology, 2021, 78, 961.	9.0	148
15	Comparing ATN-T designation by tau PET visual reads, tau PET quantification, and CSF PTau181 across three cohorts. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2259-2271.	6.4	10
16	Sex differences in off-target binding using tau positron emission tomography. NeuroImage: Clinical, 2021, 31, 102708.	2.7	21
17	Ability of tauâ€PET, phosphoâ€ŧau217, NfL and cortical thickness to predict shortâ€ŧerm cognitive decline in early symptomatic Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
18	Unravelling drivers of age―and betaâ€amyloidâ€related neurodegeneration in medial temporal lobe atrophy in cognitively normal older adults. Alzheimer's and Dementia, 2021, 17, .	0.8	0

#	Article	IF	CITATIONS
19	Biomarker driven enrichment strategies for tau pathology in AD clinical trials. Alzheimer's and Dementia, 2021, 17, .	0.8	0
20	Plasma glial fibrillary acidic protein is an early and specific marker of amyloidâ€Ĵ² pathology in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	1
21	Potential drivers of age―and betaâ€amyloidâ€related neurodegeneration in early and late Alzheimer's Disease regions in cognitively normal older adults. Alzheimer's and Dementia, 2021, 17, .	0.8	0
22	[¹⁸ F]RO948 tau PET in bvFTD due to <i>C9orf72</i> and <i>GRN</i> mutations. Alzheimer's and Dementia, 2021, 17, .	0.8	0
23	Head-to-head comparison of tau positron emission tomography tracers [18F]flortaucipir and [18F]RO948. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 342-354.	6.4	61
24	Distinct tau PET patterns in atrophyâ€defined subtypes of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 335-344.	0.8	73
25	Derivation and utility of an Aβ-PET pathology accumulation index to estimate Aβ load. Neurology, 2020, 95, e2834-e2844.	1.1	14
26	Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer's disease. Science Advances, 2020, 6, .	10.3	86
27	Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA - Journal of the American Medical Association, 2020, 324, 772.	7.4	640
28	Compensating for choroid plexus based off-target signal in the hippocampus using 18F-flortaucipir PET. NeuroImage, 2020, 221, 117193.	4.2	9
29	Phosphoâ€ŧau217 and phosphoâ€ŧau181 in plasma and CSF as biomarkers for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e037520.	0.8	2
30	Accounting for systematic spatiotemporal variation improves connectomeâ€based models of tau spreading in human Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e040586.	0.8	0
31	Compensating for choroid plexus based offâ€ŧarget signal in the hippocampus using [18 F]flortaucipir PET. Alzheimer's and Dementia, 2020, 16, e041800.	0.8	0
32	Mild behavioral impairment is predictive of tau deposition in the earliest stages of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042595.	0.8	6
33	The accumulation rate of tau aggregates is higher in females and younger individuals. Alzheimer's and Dementia, 2020, 16, e043876.	0.8	2
34	Optimized regional analysis to detect longitudinal 18 Fâ€ROâ€948 tau PET change in early AD. Alzheimer's and Dementia, 2020, 16, e045765.	0.8	1
35	Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease From Other Neurodegenerative Disorders. JAMA Neurology, 2020, 77, 955.	9.0	136
36	The implications of different approaches to define AT(N) in Alzheimer disease. Neurology, 2020, 94, e2233-e2244.	1.1	80

#	Article	IF	CITATIONS
37	Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease. Nature Communications, 2020, 11, 2612.	12.8	283
38	No symphony without bassoon and piccolo: changes in synaptic active zone proteins in Huntington's disease. Acta Neuropathologica Communications, 2020, 8, 77.	5.2	4
39	Assessment of Demographic, Genetic, and Imaging Variables Associated With Brain Resilience and Cognitive Resilience to Pathological Tau in Patients With Alzheimer Disease. JAMA Neurology, 2020, 77, 632.	9.0	80
40	Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nature Medicine, 2020, 26, 379-386.	30.7	643
41	[18F]Flortaucipir distinguishes Alzheimer's disease from progressive supranuclear palsy pathology in a mixed-pathology case. Acta Neuropathologica, 2020, 139, 411-413.	7.7	6
42	Functional brain architecture is associated with the rate of tau accumulation in Alzheimer's disease. Nature Communications, 2020, 11, 347.	12.8	185
43	Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer's disease. Nature Communications, 2020, 11, 1683.	12.8	252
44	Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer's disease. Science Advances, 2020, 6, eaaz2387.	10.3	202
45	The accumulation rate of tau aggregates is higher in females and younger amyloid-positive subjects. Brain, 2020, 143, 3805-3815.	7.6	65
46	Regional times to equilibria and their impact on semi-quantification of [18F]AV-1451 uptake. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2223-2232.	4.3	5
47	Predicting diagnosis and cognition with ¹⁸ Fâ€AVâ€1451 tau PET and structural MRI in Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 570-580.	0.8	84
48	18F-Flortaucipir in TDP-43 associated frontotemporal dementia. Scientific Reports, 2019, 9, 6082.	3.3	26
49	DTâ€01â€04: DIAGNOSTIC PERFORMANCE OF [¹⁸ F]RO948 PET IN THE SEPARATION OF ALZHEIMER DISEASE FROM OTHER NEURODEGENERATIVE DISORDERS: FINDINGS FROM THE BIOFINDERâ€2 STUDY. Alzheimer's and Dementia, 2019, 15, P1485.	8'S 0.8	0
50	Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease. Neurology, 2019, 92, e601-e612.	1.1	196
51	Correlation of In Vivo [¹⁸ F]Flortaucipir With Postmortem Alzheimer Disease Tau Pathology. JAMA Neurology, 2019, 76, 310.	9.0	84
52	Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity. ELife, 2019, 8, .	6.0	57
53	Comparing ¹⁸ F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology, 2018, 90, e388-e395.	1.1	83
54	18F-AV-1451 in Parkinson's Disease with and without dementia and in Dementia with Lewy Bodies. Scientific Reports, 2018, 8, 4717.	3.3	59

ARTICLE IF CITATIONS Cerebral hypoperfusion is not associated with an increase in amyloid Î² pathology in middleâ€aged or elderly people. Alzheimer's and Dementia, 2018, 14, 54-61. ICâ€Pâ€218: ¹⁸Fâ€FLORTAUCIPIR (AVâ€1451) RETENTION IN PARKINSON'S DISEASE AND DEMENTIA WITH 0 56 LEWY BODIES. Alzheimer's and Dementia, 2018, 14, P178. O3â€04â€04: ¹⁸Fâ€FLORTAUCIPIR (AVâ€1451) RETENTION IN PARKINSON'S DISEASE AND DEMENTIA WITH LEWY BODIES. Alzheimer's and Dementia, 2018, 14, P1020. P1â€430: EFFECTS OF <i>APOE</i> ε4 ON TAU, AMYLOID, ATROPHY AND COGNITION IN ALZHEIMER'S DISEASE. 0.8 58 0 Alzheimer's and Dementia, 2018, 14, P473. O3â€04â€01: ASSOCIATIONS BETWEEN TAU, AÎ² AND CORTICAL THICKNESS WITH COGNITION IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1018. Discriminative Accuracy of [¹⁸F]flortaucipir Positron Emission Tomography for Alzheimer 60 Disease vs Other Neurodegenerative Disorders. JAMA - Journal of the American Medical Association, 7.4 298 2018, 320, 1151. Greater tau load and reduced cortical thickness in APOE ε4-negative Alzheimer's disease: a cohort 6.2 56 study. Alzheimer's Research and Therapy, 2018, 10, 77. <scp>I</scp>ncreased basal ganglia binding of ¹⁸<scp>Fâ€AVâ€1451</scp> in patients with 3.9 62 111 progressive supranuclear palsy. Movement Disorders, 2017, 32, 108-114. Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy. Acta Neuropathologica, 2017, 133, 149-151. In vivo retention of ¹⁸ F-AV-1451 in corticobasal syndrome. Neurology, 2017, 89, 845-853. 1.1 103 64 ¹⁸Fâ€AVâ€1451 and CSF Tâ€tau and Pâ€tau as biomarkers in Alzheimer's disease. EMBO Molecular 6.9 156 Medicine, 2017, 9, 1212-1223. Modeling Strategies for Quantification of In Vivo ¹⁸F-AV-1451 Binding in Patients with Tau 5.0 66 53 Pathology. Journal of Nuclear Medicine, 2017, 58, 623-631. [ICâ€Pâ€199]: [18]Fâ€AVâ€1451 PET IN CLINICALLY DIAGNOSED CORTICOBASAL DEGENERATION. Alzheimer's and Dementia, 2017, 13, P146. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer's disease. Brain, 2017, 68 7.6 149 140, 2286-2294. Tau Pathology Distribution in Alzheimer's disease Corresponds Differentially to Cognition-Relevant 69 2.8 Functional Brain Networks. Frontiers in Neuroscience, 2017, 11, 167. [ICâ€Pâ€195]: SPATIAL CORRESPONDENCE OF ALZHEIMER'S DISEASEâ€RELATED TAU PATHOLOGY AND GREY MATTER ATROPHY DISTRIBUTION WITH INTRINSIC FUNCTIONAL BRAIN NETWORKS. Alzheimer's and Dementia, 2017, 70 0.8 0 13, P143. $<\!sup>18<\!/sup>F-AV-1451$ tau PET imaging correlates strongly with tau neuropathology in<i>MAPT</i>mutation carriers. Brain, 2016, 139, 2372-2379. 71 149 Posterior Accumulation of Tau and Concordant Hypometabolism in an Early-Onset Alzheimer's Disease 72 2.6 30 Patient with Presenilin-1 Mutation. Journal of Alzheimer's Disease, 2016, 51, 339-343.

#	Article	IF	CITATIONS
73	P4â€339: Early―and Lateâ€Onset Alzheimer'S Disease are Associated with Distinct Regional TAU Pathology Examined with [18]Fâ€AVâ€1451 TAU Positron Emission Tomography. Alzheimer's and Dementia, 2016, 12, P1164.	as 0.8	0
74	P3-224: Age-Related Increase in Basal Ganglia Binding of 18 F-AV1451 in Healthy Elderly and Patients with Progressive Supranuclear Palsy. , 2016, 12, P911-P911.		0
75	IC-01-04: 18 F-AV1451 Pet Detects TAU Pathology in MAPT Mutation Carriers and Correlates Strongly with Immunohistochemistry of TAU Aggregates. , 2016, 12, P3-P4.		0
76	P2â€254: ¹⁸ Fâ€AV1451 PET DETECTS TAU PATHOLOGY IN <i>MAPT</i> MUTATION CARRIERS AND CORRELATES STRONGLY WITH IMMUNOHISTOCHEMISTRY OF TAU AGGREGATES. Alzheimer's and Dementia, 2016, 12, P723.	0.8	0
77	Operative Outcomes with Myxomatous Mitral Valve Repair: Experience with 586 Patients. Heart Lung and Circulation, 2016, 25, 870-873.	0.4	1
78	The role of pallidal serotonergic function in Parkinson's disease dyskinesias: a positron emission tomography study. Neurobiology of Aging, 2015, 36, 1736-1742.	3.1	42
79	NGF Rescues Hippocampal Cholinergic Neuronal Markers, Restores Neurogenesis, and Improves the Spatial Working Memory in a Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 69-82.	1.9	28
80	B16â€NGF improves the spatial working memory in R6/1 Huntington's disease transgenic mice through the augmentation of cholinergic function and neurogenesis. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, A16.4-A16.	1.9	1
81	Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13986-13991.	7.1	82
82	Mutant huntingtin interacts with Â-tubulin and disrupts vesicular transport and insulin secretion. Human Molecular Genetics, 2009, 18, 3942-3954.	2.9	43
83	Increased metabolism in the R6/2 mouse model of Huntington's disease. Neurobiology of Disease, 2008, 29, 41-51.	4.4	114
84	Tyrosine hydroxylase expression is unstable in a human immortalized mesencephalic cell line—Studies in vitro and after intracerebral grafting in vivo. Molecular and Cellular Neurosciences, 2007, 34, 390-399.	2.2	30
85	Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington?s disease. Journal of Neurochemistry, 2007, 103, 070630082917008-???.	3.9	75
86	Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Human Reproduction, 2006, 21, 986-993.	0.9	273
87	Cholinergic neuronal defect without cell loss in Huntington's disease. Human Molecular Genetics, 2006, 15, 3119-3131.	2.9	117
88	Synaptic dysfunction in Huntington's disease: a new perspective. Cellular and Molecular Life Sciences, 2005, 62, 1901-1912.	5.4	141
89	Orexin loss in Huntington's disease. Human Molecular Genetics, 2005, 14, 39-47.	2.9	246
90	Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington's disease, a possible culprit in synaptic dysfunction. Neurobiology of Disease, 2005, 20, 673-684.	4.4	33

#	Article	IF	CITATIONS
91	Reappraisal of the hypo-osmotic swelling test to improve assessment of seminal fertility status. Journal of Developmental and Physical Disabilities, 1992, 15, 5-13.	3.6	13
92	Mood changes, obstetric experience and alterations in plasma cortisol, beta-endorphin and corticotrophin releasing hormone during pregnancy and the puerperium. Journal of Psychosomatic Research, 1990, 34, 53-69.	2.6	104
93	The Effect of Repetitive Haemorrhage on Plasma Cortisol, Beta-Endorphin and N-Terminal Pro-Opiomelanocortin in Conscious Sheep. Hormone and Metabolic Research, 1988, 20, 612-615.	1.5	6