Chen Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1026743/publications.pdf Version: 2024-02-01

CHEN HUANC

#	Article	IF	CITATIONS
1	Grooved Fibers: Preparation Principles Through Electrospinning and Potential Applications. Advanced Fiber Materials, 2022, 4, 203-213.	16.1	48
2	Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven. Nanoscale, 2022, 14, 419-427.	5.6	10
3	Analysis of Competing Endogenous RNAs and MicroRNAs in Tea (<i>Camellia sinensis</i>) Leaves During Infection by the Leaf Spot Pathogen <i>Pestalotiopsis trachicarpicola</i> . Molecular Plant-Microbe Interactions, 2022, 35, 432-438.	2.6	2
4	Downy feather-like para-aramid fibers and nonwovens with enhanced absorbency, air filtration and thermal insulation performances. Nano Research, 2022, 15, 5695-5704.	10.4	16
5	A review on piezoelectric fibers and nanowires for energy harvesting. Journal of Industrial Textiles, 2021, 51, 297-340.	2.4	46
6	Multi-Layered, Corona Charged Melt Blown Nonwovens as High Performance PM0.3 Air Filters. Polymers, 2021, 13, 485.	4.5	36
7	Comparative Transcriptomic Analyses of Haemophilus parasuis Reveal Differently Expressed Genes among Strains with Different Virulence Degrees. Current Microbiology, 2021, 78, 1566-1576.	2.2	1
8	Lowâ€Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Waterâ€Transfer. Advanced Science, 2021, 8, e2101727.	11.2	65
9	Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors. Chemical Engineering Journal, 2021, 425, 130682.	12.7	24
10	Fabrication and characterization of a novel facial mask substrates based on thermoplastic polyester elastomer fibers. Journal of the Textile Institute, 2020, 111, 1231-1237.	1.9	9
11	Surface fibrillation of <i>para</i> -aramid nonwoven as a multi-functional air filter with ultralow pressure drop. Journal of Materials Chemistry A, 2020, 8, 22269-22279.	10.3	15
12	Unrevealing model compounds of soil conditioners impacts on the wheat straw autohydrolysis efficiency and enzymatic hydrolysis. Biotechnology for Biofuels, 2020, 13, 122.	6.2	8
13	A comparative study of electrospun polyvinylidene fluoride and poly(vinylidenefluoride-co-trifluoroethylene) fiber webs: Mechanical properties, crystallinity, and piezoelectric properties. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502093929.	1.0	10
14	A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. Polymers for Advanced Technologies, 2020, 31, 1449-1462.	3.2	47
15	Humic acid-assisted autohydrolysis of waste wheat straw to sustainably improve enzymatic hydrolysis. Bioresource Technology, 2020, 306, 123103.	9.6	31
16	One-step treatment of periodontitis based on a core-shell micelle-in-nanofiber membrane with time-programmed drug release. Journal of Controlled Release, 2020, 320, 201-213.	9.9	38
17	Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Reseach Journal, 2019, 89, 2406-2422.	2.2	43
18	Combining polymeric membranes with inorganic woven fabric: Towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. Journal of Membrane Science, 2019, 592, 117364.	8.2	32

#	Article	IF	CITATIONS
19	Enhancing enzymatic digestibility of waste wheat straw by presoaking to reduce the ash-influencing effect on autohydrolysis. Biotechnology for Biofuels, 2019, 12, 222.	6.2	23
20	Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Applied Materials & Interfaces, 2019, 11, 38023-38030.	8.0	52
21	Chronic restraint stress promotes hepatocellular carcinoma growth by mobilizing splenic myeloid cells through activating l²-adrenergic signaling. Brain, Behavior, and Immunity, 2019, 80, 825-838.	4.1	34
22	Design of threeâ€dimensional gradient nonwoven composites with robust dust holding capacity for air filtration. Journal of Applied Polymer Science, 2019, 136, 47827.	2.6	31
23	The effects of exogenous ash on the autohydrolysis and enzymatic hydrolysis of wheat straw. Bioresource Technology, 2019, 286, 121411.	9.6	18
24	Enhanced efficacy of baicalin-loaded TPGS polymeric micelles against periodontitis. Materials Science and Engineering C, 2019, 101, 387-395.	7.3	25
25	Online fabrication of ultralight, three-dimensional, and structurally stable ultrafine fibre assemblies with a double-porous feature. Nanoscale, 2019, 11, 8185-8195.	5.6	28
26	<p>Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease</p> . International Journal of Nanomedicine, 2019, Volume 14, 963-976.	6.7	20
27	Fabrication of Polypropylene-g-(Diallylamino Triazine) Bifunctional Nonwovens with Antibacterial and Air Filtration Activities by Reactive Extrusion and Melt-Blown Technology. Journal of Chemistry, 2019, 2019, 1-11.	1.9	15
28	Green and Scalable Fabrication of Nonwoven Composites Featured with Anisotropic Water Penetration. ACS Sustainable Chemistry and Engineering, 2019, 7, 19679-19685.	6.7	11
29	Polytetrafluoroethylene/Polyphenylene Sulfide Needle-Punched Triboelectric Air Filter for Efficient Particulate Matter Removal. ACS Applied Materials & Interfaces, 2019, 11, 48437-48449.	8.0	47
30	Tensile Strength and Dispersibility of Pulp/Danufil Wet-Laid Hydroentangled Nonwovens. Materials, 2019, 12, 3931.	2.9	5
31	Effects of short-cut fiber type and water-jet pressure sum on wet strength and dispersibility of wood pulp-based wetlaid/spunlace wipes. European Journal of Wood and Wood Products, 2019, 77, 33-43.	2.9	10
32	Toxic effects of ammonia on the embryonic development of the cuttlefish <i>Sepia pharaonis</i> . Aquaculture Research, 2019, 50, 505-512.	1.8	2
33	A new dispersible moist wipe from wetlaid/spunlace nonwoven: Development and characterization. Journal of Industrial Textiles, 2019, 48, 1136-1150.	2.4	20
34	Comparing accuracy of the methods of polytetrafluoroethylene fiber linear density measurement. Textile Reseach Journal, 2019, 89, 675-687.	2.2	0
35	Environmentally friendly and breathable wet-laid hydroentangled nonwovens for personal hygiene care with excellent water absorbency and flushability. Royal Society Open Science, 2018, 5, 171486.	2.4	26
36	Honeycomb-like polysulphone/polyurethane nanofiber filter for the removal of organic/inorganic species from air streams. Journal of Hazardous Materials, 2018, 347, 325-333.	12.4	67

Chen Huang

#	Article	IF	CITATIONS
37	Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity. Biomedicine and Pharmacotherapy, 2018, 98, 806-812.	5.6	38
38	Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Advances, 2018, 8, 7932-7941.	3.6	112
39	Online prediction of the filtration performance of polypropylene melt blown nonwovens by blueâ€colored glow. Journal of Applied Polymer Science, 2018, 135, 45948.	2.6	15
40	Repetitive restraint stress changes spleen immune cell subsets through glucocorticoid receptor or β-adrenergic receptor in a stage dependent manner. Biochemical and Biophysical Research Communications, 2018, 495, 1108-1114.	2.1	36
41	Controlling the Secondary Surface Morphology of Electrospun PVDF Nanofibers by Regulating the Solvent and Relative Humidity. Nanoscale Research Letters, 2018, 13, 285.	5.7	76
42	Triboelectric Effect of Polytetrafluoroethylene Fibers to Improve the Filtration Performance of Air-Purified Materials. Journal of Engineered Fibers and Fabrics, 2018, 13, 155892501801300.	1.0	2
43	Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC Advances, 2018, 8, 42353-42360.	3.6	49
44	Histone-lysine N-methyltransferase SETD7 is a potential serum biomarker for colorectal cancer patients. EBioMedicine, 2018, 37, 134-143.	6.1	23
45	Poly(butylene terephthalate) Fiber Assembly with Controllable Pore Size and Gradient Wettability: Potential in Simplifying Cell Culture Procedure. ACS Macro Letters, 2018, 7, 1192-1197.	4.8	5
46	Multifunctional polyethylene (PE)/polypropylene (PP) bicomponent fiber filter with anchored nanocrystalline MnO ₂ for effective air purification. Journal of Materials Chemistry A, 2018, 6, 14856-14866.	10.3	58
47	An electrospun poly(ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration. RSC Advances, 2018, 8, 25228-25235.	3.6	27
48	High-efficiency catalytic performance over mesoporous Ni/beta zeolite for the synthesis of quinoline from glycerol and aniline. RSC Advances, 2017, 7, 9551-9561.	3.6	29
49	Ampicillin-incorporated alginate-chitosan fibers from microfluidic spinning and for vitro release. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1408-1425.	3.5	13
50	Improved performances of lithium-ion batteries with a separator based on inorganic fibers. Journal of Materials Chemistry A, 2017, 5, 311-318.	10.3	96
51	Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity. Nanoscale, 2017, 9, 16214-16222.	5.6	30
52	Low resistance bicomponent spunbond materials for fresh air filtration with ultra-high dust holding capacity. RSC Advances, 2017, 7, 43879-43887.	3.6	44
53	Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation. Journal of Colloid and Interface Science, 2017, 507, 386-396.	9.4	111
54	Design, synthesis and biological evaluation of hesperetin derivatives as potent anti-inflammatory agent. FA¬toterapA¬A¢, 2017, 121, 212-222.	2.2	22

#	Article	IF	CITATIONS
55	Dual micelles loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease. Journal of Controlled Release, 2017, 259, e163.	9.9	Ο
56	Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomedicine and Pharmacotherapy, 2017, 93, 1285-1291.	5.6	126
57	Preparation and characterization of nanoparticle reinforced alginate fibers with high porosity for potential wound dressing application. RSC Advances, 2017, 7, 39349-39358.	3.6	27
58	Influence of <scp>K</scp> ⁺ and <scp>N</scp> a ⁺ ions on the degradation of wetâ€spun alginate fibers for tissue engineering. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
59	Direct Electrospinning of Ultrafine Fibers with Interconnected Macropores Enabled by in Situ Mixing Microfluidics. ACS Applied Materials & Interfaces, 2016, 8, 34870-34878.	8.0	31
60	Nanocrystalline MnO ₂ on an activated carbon fiber for catalytic formaldehyde removal. RSC Advances, 2016, 6, 97022-97029.	3.6	59
61	A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids and Surfaces B: Biointerfaces, 2016, 146, 632-641.	5.0	40
62	Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model. Scientific Reports, 2016, 6, 23931.	3.3	42
63	A comparative study of characteristics of polytetrafluoroethylene fibers manufactured by various processes. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
64	Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility. Materials Science and Engineering C, 2016, 58, 750-756.	7.3	14
65	A directional liquid-transfer nonwoven for skin tissue engineering. Journal of Controlled Release, 2015, 213, e18-e19.	9.9	1
66	Electrospinning of Grooved Polystyrene Fibers: Effect of Solvent Systems. Nanoscale Research Letters, 2015, 10, 949.	5.7	52
67	MicroRNA-214 suppresses the proliferation of human hepatocellular carcinoma cells by targeting E2F3. Oncology Letters, 2015, 10, 3779-3784.	1.8	21
68	Proteomic Profiling of Invasive Ductal Carcinoma (IDC) using Magnetic Beadsâ€based Serum Fractionation and MALDIâ€TOF MS. Journal of Clinical Laboratory Analysis, 2015, 29, 321-327.	2.1	12
69	A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids and Surfaces B: Biointerfaces, 2015, 133, 179-188.	5.0	52
70	Electrospun poly(<scp>l</scp> -lactide-co-caprolactone)–collagen–chitosan vascular graft in a canine femoral artery model. Journal of Materials Chemistry B, 2015, 3, 5760-5768.	5.8	36
71	Nerve Guidance Conduits from Aligned Nanofibers: Improvement of Nerve Regeneration through Longitudinal Nanogrooves on a Fiber Surface. ACS Applied Materials & Interfaces, 2015, 7, 7189-7196.	8.0	118
72	Electronic structure and optical properties of boron-sulfur symmetric codoping in 4 × 4 graphene systems. European Physical Journal B, 2015, 88, 1.	1.5	11

#	Article	IF	CITATIONS
73	Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. Journal of Materials Chemistry B, 2015, 3, 8823-8831.	5.8	50
74	Serum peptidome based biomarkers searching for monitoring minimal residual disease in adult acute lymphocytic leukemia. Proteome Science, 2014, 12, 49.	1.7	22
75	Wettability Improvement of Poly (Butylene Terephthalate) Nanofibrous Mats Prepared via Electrospinning by Blending With Regenerated Silk Fibroin. Journal of Macromolecular Science - Physics, 2014, 53, 1629-1641.	1.0	2
76	Needleâ€punched nonwoven matrix from regenerated collagen fiber for cartilage tissue engineering. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
77	Additional noradrenergic depletion aggravates forelimb akinesia and abnormal subthalamic nucleus activity in a rat model of Parkinson's disease. Life Sciences, 2014, 119, 18-27.	4.3	1
78	Disc-Electrospun Nano/Macro-Scale PCL Fibers with Nanoporous Structure. Advanced Materials Research, 2014, 893, 124-127.	0.3	0
79	A terrified-sound stress induced proteomic changes in adult male rat hippocampus. Physiology and Behavior, 2014, 128, 32-38.	2.1	7
80	A novel heparin loaded poly(l-lactide-co-caprolactone) covered stent for aneurysm therapy. Materials Letters, 2014, 116, 39-42.	2.6	16
81	Tailoring the grooved texture of electrospun polystyrene nanofibers by controlling the solvent system and relative humidity. Nanoscale Research Letters, 2014, 9, 350.	5.7	28
82	Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids and Surfaces B: Biointerfaces, 2014, 121, 432-443.	5.0	78
83	Cell Infiltration and Vascularization in Porous Nanoyarn Scaffolds Prepared by Dynamic Liquid Electrospinning. Journal of Biomedical Nanotechnology, 2014, 10, 603-614.	1.1	66
84	Discâ€electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. Journal of Biomedical Materials Research - Part A, 2013, 101A, 115-122.	4.0	23
85	Potential biomarkers for adult acute myeloid leukemia minimal residual disease assessment searched by serum peptidome profiling. Proteome Science, 2013, 11, 39.	1.7	27
86	Study on Needle and Needleless Electrospinning for Nanofibers. Advanced Materials Research, 2013, 750-752, 276-279.	0.3	5
87	Heparin Loading and Pre-endothelialization in Enhancing the Patency Rate of Electrospun Small-Diameter Vascular Grafts in a Canine Model. ACS Applied Materials & Interfaces, 2013, 5, 2220-2226.	8.0	65
88	Fabrication of Silk Fibroin/P(LLA L) Aligned Nanofibrous Scaffolds for Nerve Tissue Engineering. Macromolecular Materials and Engineering, 2013, 298, 565-574.	3.6	29
89	Electrospinning collagen/chitosan/poly(<scp>L</scp> ″actic acidâ€ <i>co</i> ‾µâ€caprolactone) to form a vascular graft: Mechanical and biological characterization. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1292-1301.	4.0	106
90	Dysregulation of miRNAs and their potential as biomarkers for the diagnosis of gastric cancer. Biomedical Reports, 2013, 1, 907-912.	2.0	18

#	Article	IF	CITATIONS
91	Fabrication of Seamless Electrospun Collagen/PLGA Conduits Whose Walls Comprise Highly Longitudinal Aligned Nanofibers for Nerve Regeneration. Journal of Biomedical Nanotechnology, 2013, 9, 931-943.	1.1	50
92	Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	20
93	Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1556-1565.	3.4	163
94	Preparation of composite tubular grafts for vascular repair via electrospinning. Progress in Natural Science: Materials International, 2012, 22, 108-114.	4.4	17
95	Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter, 2011, 7, 10812.	2.7	62
96	Degradation of electrospun SF/P(LLA-CL) blended nanofibrous scaffolds inÂvitro. Polymer Degradation and Stability, 2011, 96, 2266-2275.	5.8	40
97	Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids and Surfaces B: Biointerfaces, 2011, 82, 307-315.	5.0	201
98	Electrospun Silk Fibroin–Hydroxybutyl Chitosan Nanofibrous Scaffolds to Biomimic Extracellular Matrix. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1069-1082.	3.5	29
99	Electrospun scaffolds from silk fibroin and their cellular compatibility. Journal of Biomedical Materials Research - Part A, 2010, 93A, 976-983.	4.0	34
100	Fabrication of silk fibroin blended P(LLAâ€CL) nanofibrous scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 984-993.	4.0	75
101	Genipinâ€crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissueâ€engineering application. Journal of Biomedical Materials Research - Part A, 2010, 95A, 870-881.	4.0	106
102	Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2010, 79, 315-325.	5.0	179
103	Poly(l-lactide-co-É>-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer, 2009, 50, 4212-4219.	3.8	86
104	Detection of CCND1 amplification using laser capture microdissection coupled with real-time polymerase chain reaction in human esophageal squamous cell carcinoma. Cancer Genetics and Cytogenetics, 2007, 175, 19-25.	1.0	26
105	Improvement of Uniformity of Needleless Electrospun Nanofibers. Advanced Materials Research, 0, 821-822, 200-203.	0.3	0