
Tobias Moser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1026641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Clchannel TMEM16A is involved in the generation of cochlear Ca2+ waves and promotes the refinement of auditory brainstem networks in mice. ELife, 2022, 11, .	2.8	8
2	Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system. Nature Communications, 2022, 13, 1648.	5.8	14
3	Analyzing efficacy, stability, and safety of AAV-mediated optogenetic hearing restoration in mice. Life Science Alliance, 2022, 5, e202101338.	1.3	7
4	Fast Photoswitchable Molecular Prosthetics Control Neuronal Activity in the Cochlea. Journal of the American Chemical Society, 2022, 144, 9229-9239.	6.6	3
5	Model-based prediction of optogenetic sound encoding in the human cochlea by future optical cochlear implants. Computational and Structural Biotechnology Journal, 2022, 20, 3621-3629.	1.9	8
6	Resolving the molecular architecture of the photoreceptor active zone with 3D-MINFLUX. Science Advances, 2022, 8, .	4.7	11
7	Is there an unmet medical need for improved hearing restoration?. EMBO Molecular Medicine, 2022, 14, .	3.3	15
8	Understanding and treating paediatric hearing impairment. EBioMedicine, 2021, 63, 103171.	2.7	8
9	Electron Microscopic Reconstruction of Neural Circuitry in the Cochlea. Cell Reports, 2021, 34, 108551.	2.9	34
10	RIM-Binding Proteins Are Required for Normal Sound-Encoding at Afferent Inner Hair Cell Synapses. Frontiers in Molecular Neuroscience, 2021, 14, 651935.	1.4	11
11	Developing Fast, Red-Light Optogenetic Stimulation of Spiral Ganglion Neurons for Future Optical Cochlear Implants. Frontiers in Molecular Neuroscience, 2021, 14, 635897.	1.4	13
12	Multiscale photonic imaging of the native and implanted cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
13	Utility of redâ€light ultrafast optogenetic stimulation of the auditory pathway. EMBO Molecular Medicine, 2021, 13, e13391.	3.3	21
14	RIM-Binding Protein 2 Organizes Ca ²⁺ Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse. Journal of Neuroscience, 2021, 41, 7742-7767.	1.7	19
15	Cabp2-Gene Therapy Restores Inner Hair Cell Calcium Currents and Improves Hearing in a DFNB93 Mouse Model. Frontiers in Molecular Neuroscience, 2021, 14, 689415.	1.4	11
16	A sensory cell diversifies its output by varying Ca ²⁺ influxâ€release coupling among active zones. EMBO Journal, 2021, 40, e106010.	3.5	43
17	The mammalian rod synaptic ribbon is essential for Cav channel facilitation and ultrafast synaptic vesicle fusion. ELife, 2021, 10, .	2.8	19
18	Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiological Reviews, 2020, 100, 103-144.	13.1	123

#	Article	IF	CITATIONS
19	Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Science Translational Medicine, 2020, 12, .	5.8	54
20	Viral rhodopsins 1 areÂan unique family of light-gated cation channels. Nature Communications, 2020, 11, 5707.	5.8	33
21	Emerging approaches for restoration of hearing and vision. Physiological Reviews, 2020, 100, 1467-1525.	13.1	45
22	Macromolecular and electrical coupling between inner hair cells in the rodent cochlea. Nature Communications, 2020, 11, 3208.	5.8	12
23	Towards optogenetic approaches for hearing restoration. Biochemical and Biophysical Research Communications, 2020, 527, 337-342.	1.0	13
24	Circumvention of common labelling artefacts using secondary nanobodies. Nanoscale, 2020, 12, 10226-10239.	2.8	61
25	Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO Molecular Medicine, 2020, 12, e11618.	3.3	56
26	Overloaded Adeno-Associated Virus as a Novel Gene Therapeutic Tool for Otoferlin-Related Deafness. Frontiers in Molecular Neuroscience, 2020, 13, 600051.	1.4	27
27	μLEDâ€based optical cochlear implants for spectrally selective activation of the auditory nerve. EMBO Molecular Medicine, 2020, 12, e12387.	3.3	29
28	Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Faculty Reviews, 2020, 9, 24.	1.7	2
29	Presynaptic Physiology of Cochlear Inner Hair Cells. , 2020, , 441-467.		4
30	β-Secretase BACE1 Is Required for Normal Cochlear Function. Journal of Neuroscience, 2019, 39, 9013-9027.	1.7	13
31	Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca ²⁺ Signaling. Journal of Neuroscience, 2019, 39, 5284-5298.	1.7	37
32	Near physiological spectral selectivity of cochlear optogenetics. Nature Communications, 2019, 10, 1962.	5.8	60
33	Mapping developmental maturation of inner hair cell ribbon synapses in the apical mouse cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6415-6424.	3.3	68
34	Intrinsic planar polarity mechanisms influence the position-dependent regulation of synapse properties in inner hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9084-9093.	3.3	21
35	Endophilinâ€A regulates presynaptic Ca ²⁺ influx and synaptic vesicle recycling in auditory hair cells. EMBO Journal, 2019, 38, .	3.5	39
36	AP180 promotes release site clearance and clathrin-dependent vesicle reformation in mouse cochlear inner hair cells. Journal of Cell Science, 2019, 133, .	1.2	15

#	Article	IF	CITATIONS
37	Toward the Optical Cochlear Implant. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033225.	2.9	17
38	A dualâ€AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knockâ€out mice. EMBO Molecular Medicine, 2019, 11, .	3.3	118
39	Peripheres Auditorisches System. Springer-Lehrbuch, 2019, , 685-700.	0.1	3
40	Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source. Scientific Reports, 2018, 8, 4922.	1.6	21
41	Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones. Nature Communications, 2018, 9, 290.	5.8	88
42	The CAPOS mutation in ATP1A3 alters Na/K-ATPase function and results in auditory neuropathy which has implications for management. Human Genetics, 2018, 137, 111-127.	1.8	24
43	High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nature Communications, 2018, 9, 1750.	5.8	128
44	Improved Microbial Rhodopsins for Ultrafast Red-Shifted Optogenetics. Biophysical Journal, 2018, 114, 669a.	0.2	0
45	Glyoxal as an alternative fixative to formaldehyde in immunostaining and superâ€resolution microscopy. EMBO Journal, 2018, 37, 139-159.	3.5	206
46	Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12811-12816.	3.3	37
47	Ultrafast optogenetic stimulation of the auditory pathway by targetingâ€optimized Chronos. EMBO Journal, 2018, 37, .	3.5	68
48	Ca2+ Regulates the Kinetics of Synaptic Vesicle Fusion at the Afferent Inner Hair Cell Synapse. Frontiers in Cellular Neuroscience, 2018, 12, 364.	1.8	26
49	Axial Tubule Junctions Activate Atrial Ca2+ Release Across Species. Frontiers in Physiology, 2018, 9, 1227.	1.3	36
50	Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance. Journal of Cell Biology, 2018, 217, 3993-4006.	2.3	32
51	High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nature Communications, 2018, 9, 3509.	5.8	88
52	Molekulares Verstehen des Hörens – Was ädert sich für den Patienten?. Laryngo- Rhino- Otologie, 2018, 97, S214-S230.	0.2	4
53	Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Science Translational Medicine, 2018, 10, .	5.8	72
54	Disruption of Otoferlin Alters the Mode of Exocytosis at the Mouse Inner Hair Cell Ribbon Synapse. Frontiers in Molecular Neuroscience, 2018, 11, 492.	1.4	21

#	Article	IF	CITATIONS
55	The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. ELife, 2018, 7, .	2.8	81
56	Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice. Neuroscience, 2017, 344, 380-393.	1.1	20
57	Ca ²⁺ -binding protein 2 inhibits Ca ²⁺ -channel inactivation in mouse inner hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1717-E1726.	3.3	42
58	Rab Interacting Molecules 2 and 3 Directly Interact with the Pore-Forming CaV1.3 Ca2+ Channel Subunit and Promote Its Membrane Expression. Frontiers in Cellular Neuroscience, 2017, 11, 160.	1.8	27
59	RIM-Binding Protein 2 Promotes a Large Number of CaV1.3 Ca2+-Channels and Contributes to Fast Synaptic Vesicle Replenishment at Hair Cell Active Zones. Frontiers in Cellular Neuroscience, 2017, 11, 334.	1.8	51
60	Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse. Frontiers in Synaptic Neuroscience, 2017, 9, 14.	1.3	31
61	DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined with a Mutation Classification System. Human Mutation, 2016, 37, 812-819.	1.1	76
62	Eyes without a ribbon. EMBO Journal, 2016, 35, 1018-1020.	3.5	0
63	Tryptophanâ€rich basic protein (<scp>WRB</scp>) mediates insertion of the tailâ€anchored protein otoferlin and is required for hair cell exocytosis and hearing. EMBO Journal, 2016, 35, 2536-2552.	3.5	55
64	Hair cells use active zones with different voltage dependence of Ca ²⁺ influx to decompose sounds into complementary neural codes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4716-25.	3.3	110
65	Auditory neuropathy — neural and synaptic mechanisms. Nature Reviews Neurology, 2016, 12, 135-149.	4.9	248
66	The Ribbon Synapse Between Type I Spiral Ganglion Neurons and Inner Hair Cells. Springer Handbook of Auditory Research, 2016, , 117-156.	0.3	27
67	New insights into cochlear sound encoding. F1000Research, 2016, 5, 2081.	0.8	17
68	Disruption of adaptor protein 2μ (<scp>AP</scp> â€2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO Journal, 2015, 34, 2686-2702.	3.5	84
69	Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated Ca _V 1.3 Ca ²⁺ channels at hair cell active zones. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3141-9.	3.3	59
70	Optogenetic stimulation of the auditory pathway for research and future prosthetics. Current Opinion in Neurobiology, 2015, 34, 29-36.	2.0	61
71	Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells. Journal of Cell Science, 2015, 128, 638-44.	1.2	64
72	Considering optogenetic stimulation for cochlear implants. Hearing Research, 2015, 322, 224-234.	0.9	75

#	Article	IF	CITATIONS
73	EF-hand protein Ca ²⁺ buffers regulate Ca ²⁺ influx and exocytosis in sensory hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1028-37.	3.3	88
74	Gene therapy for deafness: How close are we?. Science Translational Medicine, 2015, 7, 295fs28.	5.8	9
75	Relating structure and function of inner hair cell ribbon synapses. Cell and Tissue Research, 2015, 361, 95-114.	1.5	98
76	Synaptic encoding and processing of auditory information in physiology and disease. Hearing Research, 2015, 330, 155-156.	0.9	1
77	Developmental refinement of hair cell synapses tightens the coupling of Ca ² ⁺ influx to exocytosis. EMBO Journal, 2014, 33, n/a-n/a.	3.5	127
78	Uniquantal Release through a Dynamic Fusion Pore Is a Candidate Mechanism of Hair Cell Exocytosis. Neuron, 2014, 83, 1389-1403.	3.8	81
79	A new probe for super-resolution imaging of membranes elucidates trafficking pathways. Journal of Cell Biology, 2014, 205, 591-606.	2.3	122
80	ATP Hydrolysis Is Critically Required for Function of Ca _V 1.3 Channels in Cochlear Inner Hair Cells via Fueling Ca ²⁺ Clearance. Journal of Neuroscience, 2014, 34, 6843-6848.	1.7	10
81	Modes and Regulation of Endocytic Membrane Retrieval in Mouse Auditory Hair Cells. Journal of Neuroscience, 2014, 34, 705-716.	1.7	46
82	Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse. EMBO Journal, 2014, 33, n/a-n/a.	3.5	45
83	GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. Journal Physics D: Applied Physics, 2014, 47, 205401.	1.3	143
84	Optogenetic Stimulation of the Auditory Nerve. Journal of Visualized Experiments, 2014, , e52069.	0.2	16
85	Optogenetic stimulation of the auditory pathway. Journal of Clinical Investigation, 2014, 124, 1114-1129.	3.9	147
86	Concurrent Maturation of Inner Hair Cell Synaptic Ca2+ Influx and Auditory Nerve Spontaneous Activity around Hearing Onset in Mice. Journal of Neuroscience, 2013, 33, 10661-10666.	1.7	54
87	Modeling inner hair cell ribbon synapses: response heterogeneity and efficiency of sound encoding in an idealized biophysical model. BMC Neuroscience, 2013, 14, .	0.8	0
88	Disruption of the Presynaptic Cytomatrix Protein Bassoon Degrades Ribbon Anchorage, Multiquantal Release, and Sound Encoding at the Hair Cell Afferent Synapse. Journal of Neuroscience, 2013, 33, 4456-4467.	1.7	108
89	Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nature Communications, 2013, 4, 1438.	5.8	74
90	Review of Hair Cell Synapse Defects in Sensorineural Hearing Impairment. Otology and Neurotology, 2013, 34, 995-1004.	0.7	97

#	Article	IF	CITATIONS
91	Phase contrast tomography of the mouse cochlea at microfocus x-ray sources. Applied Physics Letters, 2013, 103, 083703.	1.5	55
92	Harmonin enhances voltageâ€dependent facilitation of Ca _v 1.3 channels and synchronous exocytosis in mouse inner hair cells. Journal of Physiology, 2013, 591, 3253-3269.	1.3	38
93	A critical role for the cholesterolâ€associated proteolipids PLP and M6B in myelination of the central nervous system. Glia, 2013, 61, 567-586.	2.5	91
94	The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene. Journal of Neuroscience, 2012, 32, 9485-9498.	1.7	52
95	Deletion of the Presynaptic Scaffold CAST Reduces Active Zone Size in Rod Photoreceptors and Impairs Visual Processing. Journal of Neuroscience, 2012, 32, 12192-12203.	1.7	77
96	Neural Circuit Development in the Mammalian Cochlea. Physiology, 2012, 27, 100-112.	1.6	49
97	A Mutation in CABP2 , Expressed in Cochlear Hair Cells, Causes Autosomal-Recessive Hearing Impairment. American Journal of Human Genetics, 2012, 91, 636-645.	2.6	96
98	A Mutation in PNPT1, Encoding Mitochondrial-RNA-Import Protein PNPase, Causes Hereditary Hearing Loss. American Journal of Human Genetics, 2012, 91, 919-927.	2.6	82
99	Otoferlin: a multi-C2 domain protein essential for hearing. Trends in Neurosciences, 2012, 35, 671-680.	4.2	123
100	Spike Encoding of Neurotransmitter Release Timing by Spiral Ganglion Neurons of the Cochlea. Journal of Neuroscience, 2012, 32, 4773-4789.	1.7	134
101	Probing the Functional Equivalence of Otoferlin and Synaptotagmin 1 in Exocytosis. Journal of Neuroscience, 2011, 31, 4886-4895.	1.7	94
102	The Crystal Structure of the C2A Domain of Otoferlin Reveals an Unconventional Top Loop Region. Journal of Molecular Biology, 2011, 406, 479-490.	2.0	36
103	Exocytosis at the hair cell ribbon synapse apparently operates without neuronal SNARE proteins. Nature Neuroscience, 2011, 14, 411-413.	7.1	112
104	Connexin32 can restore hearing in connexin26 deficient mice. European Journal of Cell Biology, 2011, 90, 817-824.	1.6	16
105	The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis-ichthyosis-deafness syndrome. Human Molecular Genetics, 2011, 20, 28-39.	1.4	74
106	Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3053-3058.	3.3	183
107	Harmonin inhibits presynaptic Cav1.3 Ca2+ channels in mouse inner hair cells. Nature Neuroscience, 2011, 14, 1109-1111.	7.1	83
108	A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity. EMBO Journal, 2011, 30, 2793-2804.	3.5	44

#	Article	IF	CITATIONS
109	Structure and function of cochlear afferent innervation. Current Opinion in Otolaryngology and Head and Neck Surgery, 2010, 18, 441-446.	0.8	56
110	Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nature Neuroscience, 2010, 13, 869-876.	7.1	198
111	Onset Coding Is Degraded in Auditory Nerve Fibers from Mutant Mice Lacking Synaptic Ribbons. Journal of Neuroscience, 2010, 30, 7587-7597.	1.7	186
112	A Missense Mutation in a Highly Conserved Alternate Exon of Dynamin-1 Causes Epilepsy in Fitful Mice. PLoS Genetics, 2010, 6, e1001046.	1.5	89
113	Bassoon and the Synaptic Ribbon Organize Ca2+ Channels and Vesicles to Add Release Sites and Promote Refilling. Neuron, 2010, 68, 724-738.	3.8	250
114	Mechanisms contributing to synaptic Ca ²⁺ signals and their heterogeneity in hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4483-4488.	3.3	161
115	Complexin-I Is Required for High-Fidelity Transmission at the Endbulb of Held Auditory Synapse. Journal of Neuroscience, 2009, 29, 7991-8004.	1.7	96
116	Neuroligin 2 Controls the Maturation of GABAergic Synapses and Information Processing in the Retina. Journal of Neuroscience, 2009, 29, 8039-8050.	1.7	71
117	The Ca ²⁺ Channel Subunit β2 Regulates Ca ²⁺ Channel Abundance and Function in Inner Hair Cells and Is Required for Hearing. Journal of Neuroscience, 2009, 29, 10730-10740.	1.7	75
118	Functional Properties of Synaptic Transmission in Primary Sense Organs. Journal of Neuroscience, 2009, 29, 12802-12806.	1.7	10
119	Does a single session of theta-burst transcranial magnetic stimulation of inferior temporal cortex affect tinnitus perception?. BMC Neuroscience, 2009, 10, 54.	0.8	32
120	Tuning of synapse number, structure and function in the cochlea. Nature Neuroscience, 2009, 12, 444-453.	7.1	295
121	Impairment of SLC17A8 Encoding Vesicular Glutamate Transporter-3, VGLUT3, Underlies Nonsyndromic Deafness DFNA25 and Inner Hair Cell Dysfunction in Null Mice. American Journal of Human Genetics, 2008, 83, 278-292.	2.6	237
122	Perspectives on Auditory Neuropathy: Disorders of Inner Hair Cell, Auditory Nerve, and Their Synapse. , 2008, , 397-412.		24
123	Probing the Mechanism of Exocytosis at the Hair Cell Ribbon Synapse. Journal of Neuroscience, 2007, 27, 12933-12944.	1.7	66
124	Maturation of Ribbon Synapses in Hair Cells Is Driven by Thyroid Hormone. Journal of Neuroscience, 2007, 27, 3163-3173.	1.7	82
125	Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses. Neuroscience, 2007, 149, 673-684.	1.1	34
126	Ca ²⁺ â€binding proteins tune Ca ²⁺ â€feedback to Ca _v 1.3 channels in mouse auditory hair cells. Journal of Physiology, 2007, 585, 791-803.	1.3	101

#	Article	IF	CITATIONS
127	Measurements of membrane patch capacitance using a software-based lock-in system. Pflugers Archiv European Journal of Physiology, 2007, 454, 335-344.	1.3	17
128	Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse. Cell, 2006, 127, 277-289.	13.5	554
129	α-Neurexins are required for efficient transmitter release and synaptic homeostasis at the mouse neuromuscular junction. Neuroscience, 2006, 138, 433-446.	1.1	57
130	Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (α1D) subunit of L-type Ca2+ channels. Neuroscience, 2006, 141, 1849-1860.	1.1	66
131	Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO Journal, 2006, 25, 642-652.	3.5	227
132	Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse. Journal of Physiology, 2006, 576, 55-62.	1.3	110
133	Hair cell ribbon synapses. Cell and Tissue Research, 2006, 326, 347-359.	1.5	141
134	Structure and Function of the Hair Cell Ribbon Synapse. Journal of Membrane Biology, 2006, 209, 153-165.	1.0	194
135	Expression pattern and functional characterization of connexin29 in transgenic mice. Glia, 2006, 53, 601-611.	2.5	57
136	CSPÂ-deficiency causes massive and rapid photoreceptor degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2926-2931.	3.3	80
137	Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature, 2005, 434, 889-894.	13.7	459
138	Few CaV1.3 Channels Regulate the Exocytosis of a Synaptic Vesicle at the Hair Cell Ribbon Synapse. Journal of Neuroscience, 2005, 25, 11577-11585.	1.7	261
139	βlVΣ1 spectrin stabilizes the nodes of Ranvier and axon initial segments. Journal of Cell Biology, 2004, 166, 983-990.	2.3	124
140	The afferent synapse of cochlear hair cells. Current Opinion in Neurobiology, 2003, 13, 452-458.	2.0	142
141	Calcium regulates exocytosis at the level of single vesicles. Nature Neuroscience, 2003, 6, 846-853.	7.1	126
142	LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Human Molecular Genetics, 2003, 12, 631-646.	1.4	110
143	Ca _V 1.3 Channels Are Essential for Development and Presynaptic Activity of Cochlear Inner Hair Cells. Journal of Neuroscience, 2003, 23, 10832-10840.	1.7	359
144	Calcium Dependence of Exocytosis and Endocytosis at the Cochlear Inner Hair Cell Afferent Synapse. Neuron, 2001, 29, 681-690.	3.8	310

#	Article	IF	CITATIONS
145	Munc18-1 Promotes Large Dense-Core Vesicle Docking. Neuron, 2001, 31, 581-592.	3.8	329
146	The Presynaptic Function of Mouse Cochlear Inner Hair Cells during Development of Hearing. Journal of Neuroscience, 2001, 21, 4593-4599.	1.7	200
147	Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11680-11685.	3.3	175
148	The Readily Releasable Pool of Vesicles in Chromaffin Cells Is Replenished in a Temperature-Dependent Manner and Transiently Overfills at 37°C. Journal of Neuroscience, 2000, 20, 8377-8383.	1.7	62
149	R-Type Ca2+Channels Are Coupled to the Rapid Component of Secretion in Mouse Adrenal Slice Chromaffin Cells. Journal of Neuroscience, 2000, 20, 8323-8330.	1.7	100
150	Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 883-888.	3.3	381
151	Mechanisms Underlying Phasic and Sustained Secretion in Chromaffin Cells from Mouse Adrenal Slices. Neuron, 1999, 23, 607-615.	3.8	231
152	Low-conductance intercellular coupling between mouse chromaffin cellsin situ. Journal of Physiology, 1998, 506, 195-205.	1.3	38
153	Cytosolic Ca 2+ Acts by Two Separate Pathways to Modulate the Supply of Release-Competent Vesicles in Chromaffin Cells. Neuron, 1998, 20, 1243-1253.	3.8	220
154	Estimation of mean exocytic vesicle capacitance in mouse adrenal chromaffin cells. Proceedings of the United States of America, 1997, 94, 6735-6740.	3.3	74
155	Rapid Exocytosis in Single Chromaffin Cells Recorded from Mouse Adrenal Slices. Journal of Neuroscience, 1997, 17, 2314-2323.	1.7	133
156	Swelling-induced catecholamine secretion recorded from single chromaffin cells. Pflugers Archiv European Journal of Physiology, 1995, 431, 196-203.	1.3	27