Dongli Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10265109/publications.pdf

Version: 2024-02-01

32	1,560	17 h-index	31
papers	citations		g-index
35	35	35	2761
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF- \hat{l}^2 -mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncolmmunology, 2017, 6, e1320011.	4.6	205
2	Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Research, 2018, 78, 1779-1791.	0.9	202
3	Cancer-cell-secreted CXCL11 promoted CD8+ T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC., 2019, 7, 42.		122
4	Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Letters, 2019, 452, 244-253.	7.2	120
5	Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget, 2015, 6, 33961-33971.	1.8	113
6	Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non–Small Cell Lung Cancer. Cancer Research, 2019, 79, 3737-3748.	0.9	89
7	Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via Wnt/ \hat{l}^2 -catenin pathway in esophageal squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2016, 35, 98.	8.6	75
8	Dual TGFâ€Î² and PDâ€1 blockade synergistically enhances MAGEâ€A3â€specific CD8 ⁺ T cell respon in esophageal squamous cell carcinoma. International Journal of Cancer, 2018, 143, 2561-2574.	se 5.1	68
9	Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncolmmunology, 2018, 7, e1442167.	4.6	67
10	Impaired T cell function in malignant pleural effusion is caused by TGFâ $\hat{\mathfrak{t}}^2$ derived predominantly from macrophages. International Journal of Cancer, 2016, 139, 2261-2269.	5.1	62
11	miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma. Oncotarget, 2017, 8, 86592-86603.	1.8	60
12	Epigenetic regulation of CD271, a potential cancer stem cell marker associated with chemoresistance and metastatic capacity. Oncology Reports, 2015, 33, 425-432.	2.6	44
13	Cytokine induced killer cell-based immunotherapies in patients with different stages of renal cell carcinoma. Cancer Letters, 2015, 362, 192-198.	7.2	44
14	Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Experimental Cell Research, 2015, 336, 141-149.	2.6	38
15	MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma. Biochemical and Biophysical Research Communications, 2016, 473, 821-827.	2.1	35
16	Maelstrom Directs Myeloid-Derived Suppressor Cells to Promote Esophageal Squamous Cell Carcinoma Progression via Activation of the Akt1/RelA/IL8 Signaling Pathway. Cancer Immunology Research, 2018, 6, 1246-1259.	3.4	28
17	Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma. Experimental Cell Research, 2014, 322, 149-158.	2.6	27
18	Pseudomonas aeruginosa -mannose sensitive hemagglutinin injection treated cytokine-induced killer cells combined with chemotherapy in the treatment of malignancies. International Immunopharmacology, 2017, 51, 57-65.	3.8	19

#	Article	IF	CITATIONS
19	Decitabine enhances tumor recognition by T cells through upregulating the MAGE-A3 expression in esophageal carcinoma. Biomedicine and Pharmacotherapy, 2019, 112, 108632.	5.6	19
20	Phenotypic characterization and anti-tumor effects of cytokine-induced killer cells derived from cord blood. Cytotherapy, 2015, 17, 86-97.	0.7	18
21	CIC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma. Cell Death and Disease, 2020, 11, 898.	6.3	13
22	Musashi1, a potential prognostic marker in esophageal squamous cell carcinoma. Oncology Reports, 2017, 38, 1724-1732.	2.6	12
23	NEDD9 promotes cancer stemness by recruiting myeloidderived suppressor cells <i>via</i> CXCL8 in esophageal squamous cell carcinoma. Cancer Biology and Medicine, 2021, 18, 705-720.	3.0	12
24	Selective effect of cytokine-induced killer cells on survival of patients with early-stage melanoma. Cancer Immunology, Immunotherapy, 2017, 66, 299-308.	4.2	11
25	Combined cancer testis antigens enhanced prediction accuracy for prognosis of patients with hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 2015, 8, 3513-28.	0.5	11
26	Polarization of granulocytic myeloidâ€derived suppressor cells by hepatitis C core protein is mediated via ILâ€10/STAT3 signalling. Journal of Viral Hepatitis, 2019, 26, 246-257.	2.0	10
27	Chloroquine Inhibits Stemness of Esophageal Squamous Cell Carcinoma Cells Through Targeting CXCR4-STAT3 Pathway. Frontiers in Oncology, 2020, 10, 311.	2.8	10
28	Correlation between the high expression levels of cancer-germline genes with clinical characteristics in esophageal squamous cell carcinoma. Histology and Histopathology, 2017, 32, 793-803.	0.7	8
29	Dynamic changes in CD45RAâ^'Foxp3high regulatory T-cells in chronic hepatitis C patients during antiviral therapy. International Journal of Infectious Diseases, 2016, 45, 5-12.	3.3	7
30	High Mobility Group Protein B1 Decreases Surface Localization of PD-1 to Augment T-cell Activation. Cancer Immunology Research, 2022, 10, 844-855.	3.4	4
31	Hepatitis C virus (HCV) genotype 2a has a better virologic response to antiviral therapy than HCV genotype 1b. International Journal of Clinical and Experimental Medicine, 2015, 8, 7446-56.	1.3	2
32	Immunotherapy targeting esophageal cancer stem cells. , 2013, 1, P178.		0