
F G Eparvier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1025791/publications.pdf Version: 2024-02-01

FC FDADVIED

#	Article	IF	CITATIONS
1	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
2	Solar EUV Experiment (SEE): Mission overview and first results. Journal of Geophysical Research, 2005, 110, .	3.3	448
3	The SOLAR2000 empirical solar irradiance model and forecast tool. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1233-1250.	1.6	402
4	Extreme Ultraviolet Variability Experiment (EVE) onÂtheÂSolar Dynamics Observatory (SDO): OverviewÂofÂScience Objectives, Instrument Design, DataÂProducts, and Model Developments. Solar Physics, 2012, 275, 115-143.	2.5	375
5	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
6	Structure, dynamics, and seasonal variability of the Marsâ€solar wind interaction: MAVEN Solar Wind Ion Analyzer inâ€flight performance and science results. Journal of Geophysical Research: Space Physics, 2017, 122, 547-578.	2.4	191
7	The Solar Extreme Ultraviolet Monitor for MAVEN. Space Science Reviews, 2015, 195, 293-301.	8.1	174
8	Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophysical Research Letters, 2009, 36, .	4.0	171
9	Solar irradiance variability during the October 2003 solar storm period. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	166
10	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
11	Flare Irradiance Spectral Model (FISM): Daily component algorithms and results. Space Weather, 2007, 5, .	3.7	156
12	Flare Irradiance Spectral Model (FISM): Flare component algorithms and results. Space Weather, 2008, 6, .	3.7	155
13	NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES. Astrophysical Journal, 2011, 739, 59.	4.5	144
14	The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 2017, 122, 1296-1313.	2.4	124
15	The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 2017, 122, 2748-2767.	2.4	116
16	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	4.0	115
17	Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3815-3836.	2.4	106
18	The Global-Scale Observations of the Limb and Disk (GOLD) Mission. Space Science Reviews, 2017, 212, 383-408.	8.1	105

#	Article	IF	CITATIONS
19	The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 2015, 42, 9023-9030.	4.0	95
20	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
21	Euv97: Improvements to Euv Irradiance Modeling in the Soft X-Rays and FUV. Solar Physics, 1998, 177, 147-159.	2.5	86
22	On-Orbit Degradation of Solar Instruments. Solar Physics, 2013, 288, 389-434.	2.5	80
23	Initial Observations by the GOLD Mission. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027823.	2.4	80
24	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	2.4	78
25	MAVEN IUVS observation of the hot oxygen corona at Mars. Geophysical Research Letters, 2015, 42, 9009-9014.	4.0	77
26	Solar extreme ultraviolet irradiance: Present, past, and future. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	76
27	Threeâ€dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9001-9008.	4.0	67
28	Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4009-4022.	2.4	66
29	<title>TIMED solar EUV experiment</title> . , 1998, 3442, 180.		56
30	MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 2017, 122, 3689-3706.	2.4	55
31	MAVEN insights into oxygen pickup ions at Mars. Geophysical Research Letters, 2015, 42, 8870-8876.	4.0	53
32	Solar cycle minimum measurements of the solar extreme ultraviolet spectral irradiance on 14 April 2008. Geophysical Research Letters, 2009, 36, .	4.0	52
33	Extreme Ultraviolet Variability Experiment (EVE) MultipleÂEUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results. Solar Physics, 2012, 275, 145-178.	2.5	50
34	Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 11,113.	2.4	50
35	The Flare Irradiance Spectral Modelâ€Version 2 (FISM2). Space Weather, 2020, 18, e2020SW002588.	3.7	50
36	The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 11,285.	2.4	44

#	Article	IF	CITATIONS
37	Retrieval of CO ₂ and N ₂ in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9040-9049.	4.0	43
38	Decoupling Solar Variability and Instrument Trends Using the Multiple Same-Irradiance-Level (MuSIL) Analysis Technique. Solar Physics, 2018, 293, 76.	2.5	43
39	The Extremeâ€Ultraviolet Solar Irradiance Spectrum Observed with the Coronal Diagnostic Spectrometer (CDS) onSOHO. Astrophysical Journal, 2000, 536, 959-970.	4.5	42
40	Mars H Escape Rates Derived From MAVEN/IUVS Lyman Alpha Brightness Measurements and Their Dependence on Model Assumptions. Journal of Geophysical Research E: Planets, 2018, 123, 2192-2210.	3.6	42
41	Sources of Ionospheric Variability at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 9670-9684.	2.4	40
42	Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN. Geophysical Research Letters, 2015, 42, 9135-9141.	4.0	39
43	Next generation x-ray sensor (XRS) for the NOAA GOES-R satellite series. Proceedings of SPIE, 2009, , .	0.8	38
44	Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 2016, 121, 7049-7066.	2.4	38
45	Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	3.6	38
46	The Mars Topside Ionosphere Response to the X8.2 Solar Flare of 10 September 2017. Geophysical Research Letters, 2018, 45, 8005-8013.	4.0	38
47	Solar ultraviolet variability during the TIMED mission. Advances in Space Research, 2006, 37, 219-224.	2.6	36
48	Ionizing Electrons on the Martian Nightside: Structure and Variability. Journal of Geophysical Research: Space Physics, 2018, 123, 4349-4363.	2.4	35
49	Solar Ultraviolet Irradiance Observations of the Solar Flares During the Intense September 2017 Storm Period. Space Weather, 2018, 16, 1470-1487.	3.7	34
50	Neutral density response to solar flares at Mars. Geophysical Research Letters, 2015, 42, 8986-8992.	4.0	33
51	Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 8859-8870.	2.4	33
52	MAVEN observations of dayside peak electron densities in the ionosphere of Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 891-906.	2.4	33
53	Solar extreme ultraviolet variability of the X-class flare on 21 April 2002 and the terrestrial photoelectron response. Space Weather, 2003, 1, n/a-n/a.	3.7	30
54	Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 7142-7152.	2.4	30

#	Article	IF	CITATIONS
55	Observations and Modeling of the Mars Lowâ€Altitude Ionospheric Response to the 10 September 2017 Xâ€Class Solar Flare. Geophysical Research Letters, 2018, 45, 7382-7390.	4.0	30
56	Solar extreme ultraviolet and x-ray irradiance variations. Geophysical Monograph Series, 2004, , 127-140.	0.1	29
57	Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophysical Research Letters, 2015, 42, 8894-8900.	4.0	28
58	On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES. Journal of Geophysical Research E: Planets, 2017, 122, 2401-2428.	3.6	27
59	EUV97: Improvements to EUV Irradiance Modeling in the Soft X-Rays and FUV. , 1998, , 147-159.		27
60	Mars Thermospheric Variability Revealed by MAVEN EUVM Solar Occultations: Structure at Aphelion and Perihelion and Response to EUV Forcing. Journal of Geophysical Research E: Planets, 2018, 123, 2248-2269.	3.6	26
61	Rosetta photoelectron emission and solar ultraviolet flux at comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S626-S635.	4.4	24
62	Martian Thermospheric Response to an X8.2 Solar Flare on 10 September 2017 as Seen by MAVEN/IUVS. Geophysical Research Letters, 2018, 45, 7312-7319.	4.0	24
63	The Extreme Ultraviolet Sensor (EUVS) for GOES-R. Proceedings of SPIE, 2009, , .	0.8	23
64	Soft X-ray irradiances during solar flares observed by TIMED-SEE. Journal of Geophysical Research, 2006, 111, .	3.3	21
65	Study of the Martian cold oxygen corona from the O I 130.4 nm by IUVS/MAVEN. Geophysical Research Letters, 2015, 42, 9031-9039.	4.0	21
66	An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophysical Research Letters, 2018, 45, 10,855.	4.0	21
67	Effects of a Solar Flare on the Martian Hot O Corona and Photochemical Escape. Geophysical Research Letters, 2018, 45, 6814-6822.	4.0	19
68	Mars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Timeâ€Dependent Simulation. Geophysical Research Letters, 2019, 46, 9334-9343.	4.0	19
69	Constraining and validating the Oct/Nov 2003 X-class EUV flare enhancements with observations of FUV dayglow andE-region electron densities. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	18
70	SDO-EVE EUV spectrograph optical design and performance. Proceedings of SPIE, 2007, , .	0.8	17
71	Expansion and Shrinking of the Martian Topside Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 9725-9738.	2.4	16
72	TIMED solar EUV experiment: preflight calibration results for the XUV photometer system. , 1999, , .		15

F G Eparvier

#	Article	IF	CITATIONS
73	Early Observations by the GOES-13 Solar Extreme Ultraviolet Sensor (EUVS). Solar Physics, 2010, 262, 71-115.	2.5	15
74	The GOES-R EUVS model for EUV irradiance variability. Journal of Space Weather and Space Climate, 2019, 9, A43.	3.3	14
75	Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments. , 2010, , 115-143.		13
76	Observations of the solar soft X-ray irradiance by the student nitric oxide explorer. Advances in Space Research, 2006, 37, 209-218.	2.6	12
77	A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures. Journal of Space Weather and Space Climate, 2017, 7, A36.	3.3	12
78	Tidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028562.	2.4	12
79	Ionospheric modelâ€observation comparisons: <i>E</i> layer at Arecibo Incorporation of SDOâ€EVE solar irradiances. Journal of Geophysical Research: Space Physics, 2014, 119, 3844-3856.	2.4	11
80	Statistical analysis of the reflection of incident O ⁺ pickup ions at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4089-4101.	2.4	11
81	SunCET: The Sun Coronal Ejection Tracker Concept. Journal of Space Weather and Space Climate, 2021, 11, 20.	3.3	11
82	Oneâ€Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476.	2.4	10
83	Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares. Solar Physics, 2018, 293, 1.	2.5	9
84	Global-Scale Observations of the Limb and Disk (Gold): New Observing Capabilities for the Ionosphere-Thermosphere. Geophysical Monograph Series, 0, , 319-326.	0.1	8
85	Low Electron Temperatures Observed at Mars by MAVEN on Dayside Crustal Magnetic Field Lines. Journal of Geophysical Research: Space Physics, 2019, 124, 7629-7637.	2.4	8
86	New flare model using recent measurements of the solar ultraviolet irradiance. Advances in Space Research, 2008, 42, 912-916.	2.6	7
87	Vertical Thermospheric Density Profiles From EUV Solar Occultations Made by PROBA2 LYRA for Solar Cycle 24. Space Weather, 2017, 15, 1649-1660.	3.7	7
88	Solar Extreme Ultraviolet Irradiance Uncertainties for Planetary Studies. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	7
89	EUVS-C: the measurement of the magnesium II index for GOES-R EXIS. , 2009, , .		6
90	Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432.	2.4	6

#	Article	IF	CITATIONS
91	Influence of the Solar Wind Dynamic Pressure on the Ion Precipitation: MAVEN Observations and Simulation Results. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028183.	2.4	6
92	Evidence Against Carbonization of the Thin-Film Filters of the Extreme Ultraviolet Variability Experiment Onboard the Solar Dynamics Observatory. Solar Physics, 2021, 296, 1.	2.5	6
93	Influence of Extreme Ultraviolet Irradiance Variations on the Precipitating Ion Flux From MAVEN Observations. Geophysical Research Letters, 2019, 46, 7761-7768.	4.0	5
94	GOES-R Series Solar X-ray and Ultraviolet Irradiance. , 2020, , 233-242.		5
95	Ionization Efficiency in the Dayside Ionosphere of Mars: Structure and Variability. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006923.	3.6	5
96	Cross-Calibration of TIMED SEE and SOHO EIT Irradiances. Solar Physics, 2008, 250, 207-219.	2.5	4
97	Ultraviolet Solar Spectral Irradiance Variation on Solar Cycle Timescales. Proceedings of the International Astronomical Union, 2018, 13, 203-208.	0.0	3
98	On the Altitude Patterns of Photoâ€Chemicalâ€Equilibrium in the Martian Ionosphere: A Special Role for Electron Temperature. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	3
99	Soft Xâ€ray irradiance measured by the Solar Aspect Monitor on the Solar Dynamic Observatory Extreme ultraviolet Variability Experiment. Journal of Geophysical Research: Space Physics, 2016, 121, 3648-3664.	2.4	2
100	Magnesium II Index measurements from SORCE SOLSTICE and GOES-16 EUVS. Proceedings of the International Astronomical Union, 2018, 13, 167-168.	0.0	1