Jennifer L Macalady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biogeochemistry of Microbial Coal-Bed Methane. Annual Review of Earth and Planetary Sciences, 2011, 39, 617-656.	11.0	366
2	Methane-Producing Microbial Community in a Coal Bed of the Illinois Basin. Applied and Environmental Microbiology, 2008, 74, 2424-2432.	3.1	246
3	Dominant Microbial Populations in Limestone-Corroding Stream Biofilms, Frasassi Cave System, Italy. Applied and Environmental Microbiology, 2006, 72, 5596-5609.	3.1	177
4	Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME Journal, 2008, 2, 590-601.	9.8	175
5	Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME Journal, 2012, 6, 158-170.	9.8	171
6	Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environmental Microbiology, 2007, 9, 1402-1414.	3.8	156
7	The role of biology in planetary evolution: cyanobacterial primary production in lowâ€oxygen Proterozoic oceans. Environmental Microbiology, 2016, 18, 325-340.	3.8	151
8	Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles, 2004, 8, 411-419.	2.3	150
9	Sediment Microbial Community Structure and Mercury Methylation in Mercury-Polluted Clear Lake, California. Applied and Environmental Microbiology, 2000, 66, 1479-1488.	3.1	140
10	A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME Journal, 2009, 3, 935-943.	9.8	111
11	Linking Toluene Degradation with Specific Microbial Populations in Soil. Applied and Environmental Microbiology, 1999, 65, 5403-5408.	3.1	94
12	Population dynamics of type I and II methanotrophic bacteria in rice soils. Environmental Microbiology, 2002, 4, 148-157.	3.8	91
13	Low frequency Raman Spectroscopy for micron-scale and in vivo characterization of elemental sulfur in microbial samples. Scientific Reports, 2019, 9, 7971.	3.3	90
14	Estimation of methanotroph abundance in a freshwater lake sediment. Environmental Microbiology, 2002, 4, 443-450.	3.8	89
15	Effects of Metam Sodium Fumigation on Soil Microbial Activity and Community Structure. Journal of Environmental Quality, 1998, 27, 54-63.	2.0	88
16	Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem. Frontiers in Microbiology, 2014, 5, 756.	3.5	75
17	Community Structure of Subsurface Biofilms in the Thermal Sulfidic Caves of Acquasanta Terme, Italy. Applied and Environmental Microbiology, 2010, 76, 5902-5910.	3.1	72
18	Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Organic Geochemistry, 2012, 48, 1-8.	1.8	68

JENNIFER L MACALADY

#	Article	IF	CITATIONS
19	Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage. Applied and Environmental Microbiology, 2015, 81, 1242-1250.	3.1	68
20	Quantitative Fluorescence <i>In Situ</i> Hybridization Analysis of Microbial Consortia from a Biogenic Gas Field in Alaska's Cook Inlet Basin. Applied and Environmental Microbiology, 2012, 78, 3599-3605.	3.1	67
21	Rainfall limit of the N cycle on Earth. Global Biogeochemical Cycles, 2007, 21, .	4.9	64
22	Microbial hotspots in anchialine blue holes: initial discoveries from the Bahamas. Hydrobiologia, 2011, 677, 149-156.	2.0	53
23	Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Geobiology, 2011, 9, 321-329.	2.4	52
24	Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria. Frontiers in Microbiology, 2016, 7, 598.	3.5	51
25	Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate <i>Leptolyngbya</i> sp. strain hensonii. ISME Journal, 2018, 12, 568-584.	9.8	50
26	Molecular geomicrobiology: genes and geochemical cycling. Earth and Planetary Science Letters, 2003, 209, 1-17.	4.4	46
27	Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities. Applied and Environmental Microbiology, 2016, 82, 3611-3621.	3.1	46
28	Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. Geobiology, 2014, 12, 451-468.	2.4	45
29	Soil Microbial Fingerprints, Carbon, and Nitrogen in a Mojave Desert Creosote-Bush Ecosystem. Soil Science Society of America Journal, 2007, 71, 469-475.	2.2	43
30	Application of a Depositional <i>F acies</i> Model to an Acid Mine Drainage Site. Applied and Environmental Microbiology, 2011, 77, 545-554.	3.1	43
31	Metagenomic Evidence for Sulfide Oxidation in Extremely Acidic Cave Biofilms. Geomicrobiology Journal, 2014, 31, 194-204.	2.0	41
32	Shifting microbial community structure across a marine terrace grassland chronosequence, Santa Cruz, California. Soil Biology and Biochemistry, 2010, 42, 21-31.	8.8	38
33	Biogeography of sulfur-oxidizing <i>Acidithiobacillus</i> populations in extremely acidic cave biofilms. ISME Journal, 2016, 10, 2879-2891.	9.8	38
34	Calcium isotopic fractionation in microbially mediated gypsum precipitates. Geochimica Et Cosmochimica Acta, 2016, 184, 114-131.	3.9	37
35	Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: A case study of a chemolithotrophic S-based ecosystem. Geochimica Et Cosmochimica Acta, 2016, 173, 373-386.	3.9	37
36	Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy. ISME Journal, 2016, 10, 921-933.	9.8	32

JENNIFER L MACALADY

#	Article	IF	CITATIONS
37	Elemental Sulfur Formation by Sulfuricurvum kujiense Is Mediated by Extracellular Organic Compounds. Frontiers in Microbiology, 2019, 10, 2710.	3.5	31
38	Anaerobic biodegradation of the isoprenoid biomarkers pristane and phytane. Organic Geochemistry, 2013, 65, 118-126.	1.8	28
39	Energy, ecology and the distribution of microbial life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120383.	4.0	28
40	Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chemical Geology, 2015, 410, 21-27.	3.3	27
41	Bioreactors for low-pH iron(<scp>ii</scp>) oxidation remove considerable amounts of total iron. RSC Advances, 2017, 7, 35962-35972.	3.6	25
42	The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PLoS ONE, 2018, 13, e0199784.	2.5	25
43	The Snotty and the Stringy: Energy for Subsurface Life in Caves. Advances in Environmental Microbiology, 2016, , 203-224.	0.3	21
44	Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Frontiers in Microbiology, 2015, 6, 822.	3.5	20
45	Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
46	Transport-Induced Spatial Patterns of Sulfur Isotopes (l´ ³⁴ S) as Biosignatures. Astrobiology, 2018, 18, 59-72.	3.0	19
47	Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat. Frontiers in Microbiology, 2018, 9, 858.	3.5	19
48	Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring. Environmental Microbiology, 2017, 19, 1251-1265.	3.8	18
49	Another chemolithotrophic metabolism missing in nature: sulfur comproportionation. Environmental Microbiology, 2020, 22, 1971-1976.	3.8	16
50	Metagenomic and Metatranscriptomic Study of Microbial Metal Resistance in an Acidic Pit Lake. Microorganisms, 2020, 8, 1350.	3.6	15
51	Microbial communities and organic biomarkers in a Proterozoicâ€analog sinkhole. Geobiology, 2017, 15, 784-797.	2.4	14
52	Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat. ISME Journal, 2020, 14, 3024-3037.	9.8	14
53	Microbial population structure in a stratified, acidic pit lake in the Iberian Pyrite Belt. Geomicrobiology Journal, 2020, 37, 623-634.	2.0	12
54	Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage-contaminated stream. Journal of Hydrology, 2013, 501, 163-174.	5.4	10

JENNIFER L MACALADY

#	Article	IF	CITATIONS
55	Methane-Producing Microbial Community in a Coal Bed of the Illinois Basin. Applied and Environmental Microbiology, 2008, 74, 3918-3918.	3.1	9
56	Organic Stabilization of Extracellular Elemental Sulfur in a Sulfurovum-Rich Biofilm: A New Role for Extracellular Polymeric Substances?. Frontiers in Microbiology, 2021, 12, 720101.	3.5	9
57	Draft Genome Sequence of the Piezotolerant and Crude Oil-Degrading Bacterium Rhodococcus qingshengii Strain TUHH-12. Genome Announcements, 2015, 3, .	0.8	8
58	Functional redundancy imparts process stability to acidic Fe(<scp>II</scp>)â€oxidizing microbial reactors. Environmental Microbiology, 2021, 23, 3682-3694.	3.8	6
59	Draft Genome Sequence of Lampenflora Chlorobium limicola Strain Frasassi in a Sulfidic Cave System. Genome Announcements, 2016, 4, .	0.8	4
60	The Frasassi Caves, Italy. , 2019, , 435-443.		3
61	Novel Microorganisms Contribute to Biosulfidogenesis in the Deep Layer of an Acidic Pit Lake. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
62	Anaerobic photosynthetic ecosystems. Geobiology, 2012, 10, 193-195.	2.4	1