List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1024859/publications.pdf Version: 2024-02-01

		38742	39675
111	9,544	50	94
papers	citations	h-index	g-index
117	117	117	9192
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Singlet oxygen production in photosynthesis. Journal of Experimental Botany, 2004, 56, 337-346.	4.8	629
2	Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research, 2008, 98, 551-564.	2.9	470
3	In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth Â. Plant Physiology, 2009, 150, 1855-1865.	4.8	346
4	Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast. Plant Physiology, 2016, 171, 1541-1550.	4.8	343
5	Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature, 2015, 524, 366-369.	27.8	311
6	Export of Vacuolar Manganese by AtNRAMP3 and AtNRAMP4 Is Required for Optimal Photosynthesis and Growth under Manganese Deficiency. Plant Physiology, 2010, 152, 1986-1999.	4.8	299
7	Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta, 2003, 217, 658-667.	3.2	278
8	Herbicide-induced oxidative stress in photosystem II. Trends in Biochemical Sciences, 2001, 26, 648-653.	7.5	270
9	Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta, 2002, 214, 821-828.	3.2	267
10	Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 158-164.	1.0	227
11	Regulation of Photosynthetic Electron Transport and Photoinhibition. Current Protein and Peptide Science, 2014, 15, 351-362.	1.4	226
12	Origin of cadmiumâ€induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytologist, 2008, 179, 687-699.	7.3	215
13	Production and diffusion of chloroplastic H2O2 and its implication to signalling. Journal of Experimental Botany, 2010, 61, 3577-3587.	4.8	198
14	A Dual Strategy to Cope with High Light in <i>Chlamydomonas reinhardtii</i> Â. Plant Cell, 2013, 25, 545-557.	6.6	193
15	The role of calcium in the pH-dependent control of Photosystem II. Photosynthesis Research, 1993, 37, 117-130.	2.9	186
16	Production, Detection, and Signaling of Singlet Oxygen in Photosynthetic Organisms. Antioxidants and Redox Signaling, 2013, 18, 2145-2162.	5.4	186
17	Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. Journal of Experimental Botany, 2006, 57, 1677-1684.	4.8	177
18	Singlet oxygen production in herbicide-treated photosystem II. FEBS Letters, 2002, 532, 407-410.	2.8	167

#	Article	IF	CITATIONS
19	Polyphenolic Allelochemicals from the Aquatic Angiosperm Myriophyllum spicatumInhibit Photosystem II. Plant Physiology, 2002, 130, 2011-2018.	4.8	165
20	Influence of Herbicide Binding on the Redox Potential of the Quinone Acceptor in Photosystem II: Relevance to Photodamage and Phytotoxicity. Biochemistry, 1998, 37, 17339-17344.	2.5	161
21	Scission of polysaccharides by peroxidase-generated hydroxyl radicals. Phytochemistry, 2000, 53, 565-570.	2.9	134
22	Light-Induced Acclimation of the <i>Arabidopsis chlorina1</i> Mutant to Singlet Oxygen Â. Plant Cell, 2013, 25, 1445-1462.	6.6	133
23	Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiology, 2017, 175, 1381-1394.	4.8	124
24	Hydroxyl Radical Generation by Photosystem IIâ€. Biochemistry, 2004, 43, 6783-6792.	2.5	117
25	Role of singlet oxygen in chloroplast to nucleus retrograde signaling in <i>Chlamydomonas reinhardtii</i> . FEBS Letters, 2007, 581, 5555-5560.	2.8	112
26	Towards Structural Determination of the Water-splitting Enzyme. Journal of Biological Chemistry, 2000, 275, 20652-20659.	3.4	111
27	The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher Â. Plant Cell, 2014, 26, 1781-1791.	6.6	110
28	Bicarbonate-induced redox tuning in Photosystem II for regulation and protection. Proceedings of the United States of America, 2016, 113, 12144-12149.	7.1	107
29	Evidence for a Role of VIPP1 in the Structural Organization of the Photosynthetic Apparatus in <i>Chlamydomonas</i> . Plant Cell, 2012, 24, 637-659.	6.6	104
30	Structural insights into photosystem II assembly. Nature Plants, 2021, 7, 524-538.	9.3	102
31	Photosensitizers Neutral Red (Type I) and Rose Bengal (Type II) Cause Light-Dependent Toxicity inChlamydomonas reinhardtiiand Induce theGpxhGene via Increased Singlet Oxygen Formation. Environmental Science & Technology, 2004, 38, 6307-6313.	10.0	96
32	The chloroplast NADPH thioredoxin reductase C, NTRC, controls nonâ€photochemical quenching of light energy and photosynthetic electron transport in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 804-822.	5.7	95
33	Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta, 2011, 234, 35-45.	3.2	93
34	Polysaccharide degradation by Fenton reaction- or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochemistry, 2002, 61, 31-35.	2.9	82
35	Plastid Alternative Oxidase (PTOX) Promotes Oxidative Stress When Overexpressed in Tobacco. Journal of Biological Chemistry, 2009, 284, 31174-31180.	3.4	80
36	Photoinhibition: molecular mechanisms and physiological significance. Physiologia Plantarum, 2011, 142, 1-5.	5.2	80

#	Article	IF	CITATIONS
37	Recombinant Water-Soluble Chlorophyll Protein from Brassica oleracea Var. Botrys Binds Various Chlorophyll Derivatives. Biochemistry, 2003, 42, 7427-7433.	2.5	77
38	Evidence That Cytochrome b559 Mediates the Oxidation of Reduced Plastoquinone in the Dark. Journal of Biological Chemistry, 2003, 278, 13554-13560.	3.4	77
39	Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. Journal of Experimental Botany, 2013, 64, 3843-3854.	4.8	76
40	Influence of the Redox Potential of the Primary Quinone Electron Acceptor on Photoinhibition in Photosystem II. Journal of Biological Chemistry, 2007, 282, 12492-12502.	3.4	75
41	The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 2158-2165.	1.0	75
42	Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. Plant Journal, 2005, 44, 342-347.	5.7	70
43	Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. Physiologia Plantarum, 2011, 142, 17-25.	5.2	69
44	A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen species produced in vivo. Plant Journal, 2007, 50, 475-487.	5.7	65
45	Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii. Planta, 2008, 228, 1055-1066.	3.2	65
46	Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1183-1190.	1.0	63
47	The Dual Role of the Plastid Terminal Oxidase PTOX: Between a Protective and a Pro-oxidant Function. Frontiers in Plant Science, 2015, 6, 1147.	3.6	63
48	Lack of the Small Plastid-encoded PsbJ Polypeptide Results in a Defective Water-splitting Apparatus of Photosystem II, Reduced Photosystem I Levels, and Hypersensitivity to Light. Journal of Biological Chemistry, 2002, 277, 14031-14039.	3.4	61
49	The glutathione peroxidase homologous gene Gpxh in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II. Planta, 2006, 223, 583-590.	3.2	61
50	The impact of photosynthesis on initiation of leaf senescence. Physiologia Plantarum, 2019, 166, 148-164.	5.2	56
51	Secondary Quinone in Photosystem II of Thermosynechococcus elongatus: Semiquinoneâ^'Iron EPR Signals and Temperature Dependence of Electron Transfer. Biochemistry, 2005, 44, 12780-12789.	2.5	55
52	Multi-omics Analysis Reveals Sequential Roles for ABA during Seed Maturation. Plant Physiology, 2019, 180, 1198-1218.	4.8	52
53	Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. Plant Cell, 2018, 30, 1824-1847.	6.6	51
54	The Lycopene Cyclase CrtY from Pantoea ananatis (Formerly Erwinia uredovora) Catalyzes an FADred-dependent Non-redox Reaction. Journal of Biological Chemistry, 2010, 285, 12109-12120.	3.4	50

#	Article	IF	CITATIONS
55	Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 804-817.	5.7	50
56	Downâ€regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in <i><scp>C</scp>hlamydomonas reinhardtii</i> . Plant, Cell and Environment, 2013, 36, 1204-1213.	5.7	50
57	Putative role of the malate valve enzyme NADP–malate dehydrogenase in H ₂ O ₂ signalling in <i>Arabidopsis</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130228.	4.0	50
58	High lightâ€induced hydrogen peroxide production in <i><scp>C</scp>hlamydomonas reinhardtii</i> is increased by high <scp>CO</scp> ₂ availability. Plant Journal, 2015, 81, 759-766.	5.7	50
59	Putative function of cytochrome b559 as a plastoquinol oxidase. Physiologia Plantarum, 2010, 138, 463-473.	5.2	48
60	Oxidative stress induced by the photosensitizers neutral red (type I) or rose bengal (type II) in the light causes different molecular responses in Chlamydomonas reinhardtii. Plant Science, 2005, 168, 747-759.	3.6	47
61	Reactive oxygen intermediates produced by photosynthetic electron transport are enhanced in short-day grown plants. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1306-1313.	1.0	45
62	Functional and molecular characterization of plastid terminal oxidase from rice (Oryza sativa). Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1284-1292.	1.0	45
63	An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1267-1273.	1.0	45
64	Limitation in Electron Transfer in Photosystem I Donor Side Mutants of Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2000, 275, 5852-5859.	3.4	43
65	Naphthoquinone-Dependent Generation of Superoxide Radicals by Quinone Reductase Isolated from the Plasma Membrane of Soybean. Plant Physiology, 2008, 147, 864-878.	4.8	43
66	Production of reactive oxygen species in chloride- and calcium-depleted photosystem II and their involvement in photoinhibition. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1608, 171-180.	1.0	42
67	Function of the 23 kDa extrinsic protein of Photosystem II as a manganese binding protein and its role in photoactivation. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 63-70.	1.0	42
68	The non-photochemical quenching protein LHCSR3 prevents oxygen-dependent photoinhibition in Chlamydomonas reinhardtii. Journal of Experimental Botany, 2020, 71, 2650-2660.	4.8	41
69	Manganese binding to the 23ÂkDa extrinsic protein of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 583-588.	1.0	38
70	<i>Chlamydomonas reinhardtii</i> responding to high light: a role for 2â€propenal (acrolein). Physiologia Plantarum, 2017, 161, 75-87.	5.2	38
71	Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148256.	1.0	38
72	The ABA-Deficiency Suppressor Locus HAS2 Encodes the PPR Protein LOI1/MEF11 Involved in Mitochondrial RNA Editing. Molecular Plant, 2015, 8, 644-656.	8.3	37

#	Article	IF	CITATIONS
73	Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1658-1661.	1.0	36
74	Non-Photochemical Quenching Capacity in Arabidopsis thaliana Affects Herbivore Behaviour. PLoS ONE, 2013, 8, e53232.	2.5	33
75	Chloroplast Activity and 3′phosphadenosine 5′phosphate Signaling Regulate Programmed Cell Death in Arabidopsis. Plant Physiology, 2016, 170, 1745-1756.	4.8	30
76	Effect of <i>Chlamydomonas</i> plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer. Plant Journal, 2016, 85, 219-228.	5.7	29
77	The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA-levels during stress in barley (<i>Hordeum vulgare</i> L.). RNA Biology, 2018, 15, 886-891.	3.1	25
78	Inhibition of Photosystem II activity by saturating single turnover flashes in calcium-depleted and active Photosystem II. Photosynthesis Research, 2000, 63, 209-216.	2.9	24
79	High and low potential forms of the QA quinone electron acceptor in Photosystem II of Thermosynechococcus elongatus and spinach. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 154-157.	3.8	24
80	Inhibition of electron transport at the cytochromeb6fcomplex protects photosystem II from photoinhibition. FEBS Letters, 2000, 486, 191-194.	2.8	23
81	Generation of reactive oxygen species in thylakoids from senescing flag leaves of the barley varieties Lomerit and Carina. Planta, 2015, 241, 1497-1508.	3.2	22
82	Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants. Plant Physiology, 2017, 173, 434-455.	4.8	22
83	Glycolate Induces Redox Tuning Of Photosystem II in Vivo: Study of a Photorespiration Mutant. Plant Physiology, 2018, 177, 1277-1285.	4.8	22
84	Synthesis and Biological Characterization of New Aminophosphonates for Mitochondrial pH Determination by ³¹ P NMR Spectroscopy. Journal of Medicinal Chemistry, 2013, 56, 2487-2499.	6.4	19
85	Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport. Cells, 2021, 10, 1216.	4.1	19
86	Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions. ELife, 2021, 10, .	6.0	18
87	Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane. Planta, 2017, 245, 807-817.	3.2	17
88	Importing Manganese into the Chloroplast: Many Membranes to Cross. Molecular Plant, 2018, 11, 1109-1111.	8.3	17
89	In vitro analysis of the plastid terminal oxidase in photosynthetic electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1684-1690.	1.0	15
90	Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction. Photosynthesis Research, 2017, 134, 251-263.	2.9	14

#	Article	IF	CITATIONS
91	Dynamics of the localization of the plastid terminal oxidase inside the chloroplast. Journal of Experimental Botany, 2020, 71, 2661-2669.	4.8	14
92	Singlet fission in naturally-organized carotenoid molecules. Physical Chemistry Chemical Physics, 2021, 23, 4768-4776.	2.8	13
93	Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer. Photosynthesis Research, 2019, 142, 307-319.	2.9	12
94	Overexpression of plastid terminal oxidase in <i>Synechocystis</i> sp. PCC 6803 alters cellular redox state. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160379.	4.0	11
95	Role of the two PsaE isoforms on O2 reduction at photosystem I in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148089.	1.0	11
96	Cl-Channel Inhibitors of the Arylaminobenzoate Type Act as Photosystem II Herbicides:Â A Functional and Structural Studyâ€. Biochemistry, 2001, 40, 3273-3281.	2.5	10
97	AIR12, a b -type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea. Plant Science, 2015, 233, 32-43.	3.6	10
98	Moderate drought stress stabilizes the primary quinone acceptor <scp>Q_A</scp> and the secondary quinone acceptor <scp>Q_B</scp> in photosystem <scp>II</scp> . Physiologia Plantarum, 2021, 171, 260-267.	5.2	9
99	Regulation of the generation of reactive oxygen species during photosynthetic electron transport. Biochemical Society Transactions, 2022, 50, 1025-1034.	3.4	9
100	Electron transport pathways in isolated chromoplasts from <i>Narcissus pseudonarcissus</i> L Plant Journal, 2019, 99, 245-256.	5.7	8
101	Changes in Photosynthetic Electron Transport during Leaf Senescence in Two Barley Varieties Grown in Contrasting Growth Regimes. Plant and Cell Physiology, 2020, 61, 1986-1994.	3.1	7
102	Over Expression of the Cyanobacterial Pgr5-Homologue Leads to Pseudoreversion in a Gene Coding for a Putative Esterase in Synechocystis 6803. Life, 2020, 10, 174.	2.4	7
103	Effect of constitutive expression of bacterial phytoene desaturase CRTI on photosynthetic electron transport in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 345-353.	1.0	6
104	Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress. Journal of Plant Physiology, 2017, 216, 188-196.	3.5	6
105	Evolutive differentiation between alga- and plant-type plastid terminal oxidase: Study of plastid terminal oxidase PTOX isoforms in Marchantia polymorpha. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148309.	1.0	6
106	Adenylates regulate Arabidopsis plastidial thioredoxin activities through the binding of a CBS domain protein. Plant Physiology, 2022, 189, 2298-2314.	4.8	6
107	Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer. Photosynthesis Research, 2020, 144, 63-72.	2.9	4
108	From light capture to metabolic needs, oxygenic photosynthesis is an everâ€expanding field of study in plants, algae and cyanobacteria. Physiologia Plantarum, 2017, 161, 2-5.	5.2	2

#	Article	IF	CITATIONS
109	A tribute to Ulrich Heber (1930–2016) for his contribution to photosynthesis research: understanding the interplay between photosynthetic primary reactions, metabolism and the environment. Photosynthesis Research, 2018, 137, 17-28.	2.9	1
110	Photosynthesis—European Congress on Photosynthesis Research. Physiologia Plantarum, 2019, 166, 4-6.	5.2	1
111	A tribute to <scp>Jeanâ€Marc</scp> Ducruet for his contribution to thermoluminescence and photosynthesis research. Physiologia Plantarum, 2021, 171, 179-182.	5.2	0