Paul W Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1024515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pesticidal plants in Africa: A global vision of new biological control products from local uses. Industrial Crops and Products, 2017, 110, 2-9.	5.2	132
2	Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. Journal of Chemical Ecology, 2003, 29, 811-821.	1.8	97
3	Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. , 2001, 27, 965-977.		96
4	Highly Variable Insect Control Efficacy of <i>Tephrosia vogelii</i> Chemotypes. Journal of Agricultural and Food Chemistry, 2012, 60, 10055-10063.	5.2	84
5	Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment. Phytochemistry, 2012, 78, 135-146.	2.9	84
6	Insect antifeedant furanocoumarins from Tetradium daniellii. Phytochemistry, 2003, 63, 41-46.	2.9	67
7	Dalnigrin, a neoflavonoid marker for the identification of Brazilian rosewood (Dalbergia nigra) in CITES enforcement. Phytochemistry, 2010, 71, 1122-1131.	2.9	43
8	Bisdesmosidic Saponins from <i>Securidaca longepedunculata</i> Roots: Evaluation of Deterrency and Toxicity to Coleopteran Storage Pests. Journal of Agricultural and Food Chemistry, 2009, 57, 8860-8867.	5.2	42
9	Can larvae of the pod-borer, <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea <i>Cajanus</i> sp. (Fabaceae)?. Bulletin of Entomological Research, 2002, 92, 45-51.	1.0	40
10	Bioactivity of Common Pesticidal Plants on Fall Armyworm Larvae (Spodoptera frugiperda). Plants, 2020, 9, 112.	3.5	36
11	The identification and characterization of resistance in wild species of Arachis to Spodoptera litura (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 1993, 83, 421-429.	1.0	34
12	Behavioural and neurophysiological responses of <i>Spodoptera littoralis</i> to azadirachtin and a range of synthetic analogues. Entomologia Experimentalis Et Applicata, 1995, 77, 69-80.	1.4	32
13	Comparative study of field and laboratory evaluations of the ethnobotanical Cassia sophera L. (Leguminosae) for bioactivity against the storage pests Callosobruchus maculatus (F.) (Coleoptera:) Tj ETQq1 1 C Research 2007 43 79-86).784314 r 2.6	gBT /Overio
14	Diet nutriment and rearing density affect the growth of black blowfly larvae, Phormia regina (Diptera: Calliphoridae). European Journal of Entomology, 2003, 100, 39-42.	1.2	28
15	New Insecticidal Tetradecahydroxanthenediones fromCallistemon viminalis. Journal of Natural Products, 1999, 62, 1666-1667.	3.0	26
16	Fungal isolates involved in biodeterioration of book-paper and their effects on substrate selection by Liposcelis bostrychophila (Badonnel) (Psocoptera: Liposcelididae). Journal of Stored Products Research, 2008, 44, 258-263.	2.6	22
17	<i>Toumeyella parvicornis</i> (Hemiptera: Coccidae), Causing Severe Decline of <i>Pinus caribaea</i> var. <i>Bahamensis</i> in the Turks and Caicos Islands. Florida Entomologist, 2012, 95, 113-119.	0.5	22
18	Food-selection by the booklouse, Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Journal of Stored Products Research, 2005, 41, 103-113.	2.6	19

PAUL W GREEN

#	Article	IF	CITATIONS
19	Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis. Arthropod-Plant Interactions, 2011, 5, 219-225.	1.1	18
20	Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?. Journal of Agricultural and Food Chemistry, 2015, 63, 9427-9434.	5.2	18
21	The role of chemical signalling in maintenance of the fungus garden by leaf-cutting ants. Chemoecology, 2018, 28, 101-107.	1.1	15
22	Susceptibility of pigeonpea and some of its wild relatives to predation by Helicoverpa armigera: implications for breeding resistant cultivars. Australian Journal of Agricultural Research, 2006, 57, 831.	1.5	14
23	A New Insecticidal Pyranocyclohexenedione from Kunzea ericifolia. Journal of Natural Products, 1999, 62, 1423-1424.	3.0	13
24	Insect-derived compounds affect the behaviour of Liposcelis bostrychophila: Effects of combination and structure. Journal of Stored Products Research, 2011, 47, 262-266.	2.6	13
25	Effects of plant-derived compounds on larvae of a blowï¬,y species that causes secondary myiases: laboratory studies. Phytotherapy Research, 2004, 18, 538-541.	5.8	11
26	Does the size of larval groups influence the effect of metabolic inhibitors on the development of Phormia regina (Diptera: Calliphoridae) larvae?. European Journal of Entomology, 2002, 99, 19-22.	1.2	11
27	The Effects of Insect Extracts and Some Insect-Derived Compounds on the Settling Behavior of Liposcelis bostrychophila. Journal of Chemical Ecology, 2009, 35, 1096-1107.	1.8	10
28	Nor-hopanes from Zanha africana root bark with toxicity to bruchid beetles. Phytochemistry, 2016, 123, 25-32.	2.9	10
29	Toxicity and behavioural effects of diet-borne alkaloids on larvae of the black blowfly,Phormia regina. Medical and Veterinary Entomology, 2002, 16, 157-160.	1.5	9
30	Substrate selection by Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae): effects of insect extracts and biodeteriorated book-paper. Journal of Stored Products Research, 2005, 41, 445-454.	2.6	9
31	Volatile compounds from Liposcelis bostrychophila (Psocoptera: Liposcelididae) and their environment and their effects on settling behaviour. Biochemical Systematics and Ecology, 2014, 57, 81-89.	1.3	9
32	Novel Agmatine Derivatives in Maerua edulis With Bioactivity Against Callosobruchus maculatus, a Cosmopolitan Storage Insect Pest. Frontiers in Plant Science, 2018, 9, 1506.	3.6	6
33	The Scope for Using the Volatile Profiles ofPinus caribaeavar.bahamensisas Indicators of Susceptibility to Pine Tortoise Scale and as Predictors of Environmental Stresses. Chemistry and Biodiversity, 2015, 12, 652-661.	2.1	2