Herbert Y Gaisano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102415/publications.pdf

Version: 2024-02-01

182 papers 6,819 citations

44069 48 h-index 91884 69 g-index

185 all docs 185
docs citations

185 times ranked 7236 citing authors

#	Article	IF	CITATIONS
1	Rab9 Mediates Pancreatic Autophagy Switch From Canonical to Noncanonical, Aggravating Experimental Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 599-622.	4.5	5
2	Association between changes in lipid indexes and early progression of kidney dysfunction in participants with normal estimated glomerular filtration rate: a prospective cohort study. Endocrine, $2022, 1.$	2.3	3
3	A live-imaging protocol for tracking receptor dynamics in single cells. STAR Protocols, 2022, 3, 101347.	1.2	2
4	Pancreas-specific SNAP23 depletion prevents pancreatitis by attenuating pathological basolateral exocytosis and formation of trypsin-activating autolysosomes. Autophagy, 2021, 17, 3068-3081.	9.1	12
5	The endocytosis of oxidized LDL via the activation of the angiotensin II type 1 receptor. IScience, 2021, 24, 102076.	4.1	10
6	Dysregulation of mannose-6-phosphate–dependent cholesterol homeostasis in acinar cells mediates pancreatitis. Journal of Clinical Investigation, 2021, 131, .	8.2	9
7	Baseline and Cumulative Blood Pressure in Predicting the Occurrence of Cardiovascular Events. Frontiers in Cardiovascular Medicine, 2021, 8, 735679.	2.4	7
8	Glomerular Hyperfiltration Interacts With Abnormal Metabolism to Enhance Arterial Stiffness in Middle-Aged and Elderly People. Frontiers in Medicine, 2021, 8, 732413.	2.6	1
9	Relation of adipose tissue insulin resistance to prediabetes. Endocrine, 2020, 68, 93-102.	2.3	12
10	Recent Insights into Beta-cell Exocytosis in Type 2 Diabetes. Journal of Molecular Biology, 2020, 432, 1310-1325.	4.2	40
11	Elevated triglyceride-glucose (TyG) index predicts incidence of Prediabetes: a prospective cohort study in China. Lipids in Health and Disease, 2020, 19, 226.	3.0	31
12	Clinical Characteristics and Longâ€term Outcomes of Children With Fibrosing Pancreatitis. Journal of Pediatric Gastroenterology and Nutrition, 2020, 70, 801-807.	1.8	3
13	Relationship of obesity to adipose tissue insulin resistance. BMJ Open Diabetes Research and Care, 2020, 8, e000741.	2.8	29
14	Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcoholism: Clinical and Experimental Research, 2020, 44, 777-789.	2.4	10
15	Editorial Overview: "lslet Biology in Type 2 Diabetes― Journal of Molecular Biology, 2020, 432, 1307-1309.	4.2	0
16	Risk of chronic kidney disease defined by decreased estimated glomerular filtration rate in individuals with different prediabetic phenotypes: results from a prospective cohort study in China. BMJ Open Diabetes Research and Care, 2020, 8, e000955.	2.8	4
17	SNAP23 depletion enables more SNAP25/calcium channel excitosome formation to increase insulin exocytosis in type 2 diabetes. JCI Insight, 2020, 5, .	5.0	14
18	Simvastatin induces autophagic flux to restore cerulein-impaired phagosome-lysosome fusion in acute pancreatitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165530.	3.8	24

#	Article	lF	Citations
19	Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nature Communications, 2019, 10, 3650.	12.8	131
20	Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nature Metabolism, $2019, 1, 1110-1126$.	11.9	59
21	VAMP8-mediated MUC2 mucin exocytosis from colonic goblet cells maintains innate intestinal homeostasis. Nature Communications, 2019, 10, 4306.	12.8	58
22	Association Between Age at Natural Menopause and Risk of Type 2 Diabetes in Postmenopausal Women With and Without Obesity. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3039-3048.	3.6	17
23	Association Between Triglyceride Level and Glycemic Control Among Insulin-Treated Patients With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1211-1220.	3.6	31
24	A glucose-dependent spatial patterning of exocytosis in human \hat{l}^2 cells is disrupted in type 2 diabetes. JCI Insight, 2019, 4, .	5.0	18
25	Pancreatitis-Induced Depletion of Syntaxin 2 Promotes Autophagy and Increases Basolateral Exocytosis. Gastroenterology, 2018, 154, 1805-1821.e5.	1.3	41
26	Depletion of the membrane-fusion regulator Munc18c attenuates caerulein hyperstimulation–induced pancreatitis. Journal of Biological Chemistry, 2018, 293, 2510-2522.	3.4	9
27	Kv2.1 clusters on \hat{i}^2 -cell plasma membrane act as reservoirs that replenish pools of newcomer insulin granule through their interaction with syntaxin-3. Journal of Biological Chemistry, 2018, 293, 6893-6904.	3.4	16
28	Reply. Gastroenterology, 2018, 155, 1274.	1.3	0
29	Comparison of the Effect of Glycemic Control in Type 2 Diabetes Outpatients Treated With Premixed and Basal Insulin Monotherapy in China. Frontiers in Endocrinology, 2018, 9, 639.	3.5	8
30	Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China. Frontiers in Physiology, 2018, 9, 59.	2.8	61
31	C2 Domains of Munc13-4 Are Crucial for Ca2+-Dependent Degranulation and Cytotoxicity in NK Cells. Journal of Immunology, 2018, 201, 700-713.	0.8	18
32	Cell polarity defines three distinct domains in pancreatic beta cells. Journal of Cell Science, 2017, 130, 143-151.	2.0	72
33	New Roles of Syntaxin-1A in Insulin Granule Exocytosis and Replenishment. Journal of Biological Chemistry, 2017, 292, 2203-2216.	3.4	32
34	Palmitic acid increases invasiveness of pancreatic cancer cells AsPC-1 through TLR4/ROS/NF-κB/MMP-9 signaling pathway. Biochemical and Biophysical Research Communications, 2017, 484, 152-158.	2.1	56
35	Post–Glucose Load Measures of Insulin Resistance and Prognosis of Nondiabetic Patients With Ischemic Stroke. Journal of the American Heart Association, 2017, 6, .	3.7	29
36	Syntaxin 2 Acts as Inhibitory SNARE for Insulin Granule Exocytosis. Diabetes, 2017, 66, 948-959.	0.6	19

3

#	Article	IF	CITATIONS
37	Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis. EBioMedicine, 2017, 16, 262-274.	6.1	17
38	Ex vivo human pancreatic slice preparations offer a valuable model for studying pancreatic exocrine biology. Journal of Biological Chemistry, 2017, 292, 5957-5969.	3.4	53
39	The SNARE Protein Syntaxin-1a Plays an Essential Role in Biphasic Exocytosis of the Incretin Hormone Glucagon-Like Peptide 1. Diabetes, 2017, 66, 2327-2338.	0.6	30
40	Kv2.1 Clustering Contributes to Insulin Exocytosis and Rescues Human \hat{l}^2 -Cell Dysfunction. Diabetes, 2017, 66, 1890-1900.	0.6	34
41	<i>Entamoeba histolytica</i> -Induced Mucin Exocytosis Is Mediated by VAMP8 and Is Critical in Mucosal Innate Host Defense. MBio, 2017, 8, .	4.1	26
42	Confocal Imaging of Neuropeptide Y-pHluorin: A Technique to Visualize Insulin Granule Exocytosis in Intact Murine and Human Islets. Journal of Visualized Experiments, 2017, , .	0.3	7
43	Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes, Obesity and Metabolism, 2017, 19, 115-123.	4.4	53
44	Kv2.1 Clustering Contributes to Exocytosis Hotspots and Rescues Human \hat{I}^2 -Cell Dysfunction. Canadian Journal of Diabetes, 2017, 41, S11-S12.	0.8	1
45	Neck Circumference, a Novel Indicator for Hyperuricemia. Frontiers in Physiology, 2017, 8, 965.	2.8	18
46	Association between Indices of Body Composition and Abnormal Metabolic Phenotype in Normal-Weight Chinese Adults. International Journal of Environmental Research and Public Health, 2017, 14, 391.	2.6	29
47	VAMP8 mucin exocytosis attenuates intestinal pathogenesis by Entamoeba histolytica. Microbial Cell, 2017, 4, 426-427.	3.2	4
48	Synaptotagmin-7 Functions to Replenish Insulin Granules for Exocytosis in Human Islet \hat{l}^2 -Cells. Diabetes, 2016, 65, 1962-1976.	0.6	48
49	Changes in beta cell function occur in prediabetes and early disease in the Lepr db mouse model of diabetes. Diabetologia, 2016, 59, 1222-1230.	6.3	31
50	Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells. PLoS ONE, 2016, 11, e0147862.	2.5	11
51	Association of Diabetes and Prognosis of Minor Stroke and Its Subtypes: A Prospective Observational Study. PLoS ONE, 2016, 11, e0153178.	2.5	19
52	Association of KCNB1 polymorphisms with lipid metabolisms and insulin resistance: a case-control design of population-based cross-sectional study in Chinese Han population. Lipids in Health and Disease, 2015, 14, 112.	3.0	4
53	Cell-to-Cell Communication and the Regulation of Pancreatic Function. Pancreas, 2015, 44, 1174-1175.	1.1	4
54	Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2015, 290, 18757-18769.	3.4	58

#	Article	IF	CITATIONS
55	ER stress-associated CTRC mutants decrease stimulated pancreatic zymogen secretion through SIRT2-mediated microtubule dysregulation. Biochemical and Biophysical Research Communications, 2015, 463, 329-335.	2.1	10
56	The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis. Molecular Metabolism, 2015, 4, 344-352.	6.5	23
57	Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells. Diabetologia, 2015, 58, 1250-1259.	6.3	34
58	Chaperoning of closed syntaxin-3 through Lys46 and Glu59 in domain 1 of Munc18 proteins is indispensable for mast cell exocytosis. Journal of Cell Science, 2015, 128, 1946-1960.	2.0	8
59	A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells. Journal of Biological Chemistry, 2015, 290, 25045-25061.	3.4	25
60	Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia, 2015, 58, 2810-2818.	6.3	30
61	Munc18c mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose stimulated insulin secretion in human pancreatic beta-cells. Molecular Metabolism, 2015, 4, 418-426.	6.5	22
62	PTEN Deletion in Pancreatic α-Cells Protects Against High-Fat Diet–Induced Hyperglucagonemia and Insulin Resistance. Diabetes, 2015, 64, 147-157.	0.6	17
63	Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic Î ² Cells. Molecular and Cellular Proteomics, 2014, 13, 3049-3062.	3.8	48
64	Phosphatidylinositol 4,5-Biphosphate (PIP2) Modulates Interaction of Syntaxin-1A with Sulfonylurea Receptor 1 to Regulate Pancreatic \hat{l}^2 -Cell ATP-sensitive Potassium Channels. Journal of Biological Chemistry, 2014, 289, 6028-6040.	3.4	7
65	Biliopancreatic Route for Effective Viral Transduction of Pancreatic Islets. Pancreas, 2014, 43, 240-244.	1.1	3
66	Role of vesicle-associated membrane protein 2 in exocytosis of glucagon-like peptide-1 from the murine intestinal L cell. Diabetologia, 2014, 57, 809-818.	6.3	26
67	\hat{l}_{\pm}/\hat{l}^2 -Hydrolase Domain-6-Accessible Monoacylglycerol Controls Glucose-Stimulated Insulin Secretion. Cell Metabolism, 2014, 19, 993-1007.	16.2	125
68	Vesicle Associated Membrane Protein 8 (VAMP8)-mediated Zymogen Granule Exocytosis Is Dependent on Endosomal Trafficking via the Constitutive-Like Secretory Pathway. Journal of Biological Chemistry, 2014, 289, 28040-28053.	3.4	19
69	Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels. Journal of Molecular and Cellular Cardiology, 2014, 75, 100-110.	1.9	4
70	Dichotomous role of pancreatic HUWE1/MULE/ARF-BP1 in modulating beta cell apoptosis in mice under physiological and genotoxic conditions. Diabetologia, 2014, 57, 1889-1898.	6.3	16
71	The secretory deficit in islets from db/db mice is mainly due to a loss of responding beta cells. Diabetologia, 2014, 57, 1400-1409.	6.3	41
72	Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. Diabetologia, 2014, 57, 1655-1663.	6.3	76

#	Article	IF	Citations
73	Here come the newcomer granules, better late than never. Trends in Endocrinology and Metabolism, 2014, 25, 381-388.	7.1	45
74	Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia, 2013, 56, 359-369.	6.3	66
75	<scp>RalA GTPase</scp> Tethers Insulin Granules to L―and Râ€Type Calcium Channels Through Binding α ₂ Îã€I Subunit. Traffic, 2013, 14, 428-439.	2.7	12
76	Glucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell. Diabetologia, 2013, 56, 2629-2637.	6.3	40
77	In Situ Electrophysiological Examination of Pancreatic $\hat{l}\pm$ Cells in the Streptozotocin-Induced Diabetes Model, Revealing the Cellular Basis of Glucagon Hypersecretion. Diabetes, 2013, 62, 519-530.	0.6	62
78	UCP2 Regulates the Glucagon Response to Fasting and Starvation. Diabetes, 2013, 62, 1623-1633.	0.6	62
79	Munc18b Is a Major Mediator of Insulin Exocytosis in Rat Pancreatic β-Cells. Diabetes, 2013, 62, 2416-2428.	0.6	39
80	Somatostatin Receptor Type 2 Antagonism Improves Glucagon Counterregulation in Biobreeding Diabetic Rats. Diabetes, 2013, 62, 2968-2977.	0.6	50
81	An Exploratory Study of the Association between KCNB1 rs1051295 and Type 2 Diabetes and Its Related Traits in Chinese Han Population. PLoS ONE, 2013, 8, e56365.	2.5	9
82	Exocyst Sec5 Regulates Exocytosis of Newcomer Insulin Granules Underlying Biphasic Insulin Secretion. PLoS ONE, 2013, 8, e67561.	2.5	20
83	In Vivo Role of Focal Adhesion Kinase in Regulating Pancreatic \hat{l}^2 -Cell Mass and Function Through Insulin Signaling, Actin Dynamics, and Granule Trafficking. Diabetes, 2012, 61, 1708-1718.	0.6	62
84	Molecular control of compound Exocytosis. Communicative and Integrative Biology, 2012, 5, 61-63.	1.4	17
85	Glucagon secretion and signaling in the development of diabetes. Frontiers in Physiology, 2012, 3, 349.	2.8	56
86	Effects of Ethanol Metabolites on Exocytosis of Pancreatic Acinar Cells in Rats. Gastroenterology, 2012, 143, 832-843.e7.	1.3	23
87	Dual Role of VAMP8 in Regulating Insulin Exocytosis and Islet Î ² Cell Growth. Cell Metabolism, 2012, 16, 238-249.	16.2	77
88	VAMP8 Deletion Delays the Onset of Streptozotocin-Induced Hyperglycemia. Canadian Journal of Diabetes, 2012, 36, 251-256.	0.8	1
89	Role of mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) in the recruitment of newcomer insulin granules in both first and second phases of glucose-stimulated insulin secretion in mouse islets. Diabetologia, 2012, 55, 2693-2702.	6.3	27
90	Deploying insulin granule–granule fusion to rescue deficient insulin secretion in diabetes. Diabetologia, 2012, 55, 877-880.	6.3	14

#	Article	IF	Citations
91	Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. Journal of Clinical Investigation, 2012, 122, 388-402.	8.2	141
92	TGF- \hat{l}^21 increases invasiveness of SW1990 cells through Rac1/ROS/NF- \hat{l}^2 B/IL-6/MMP-2. Biochemical and Biophysical Research Communications, 2011, 405, 140-145.	2.1	47
93	SNARE protein regulation of cardiac potassium channels and atrial natriuretic factor secretion. Journal of Molecular and Cellular Cardiology, 2011, 50, 401-407.	1.9	24
94	Syntaxin-1A inhibits KATP channels by interacting with specific conserved motifs within sulfonylurea receptor 2A. Journal of Molecular and Cellular Cardiology, 2011, 51, 790-802.	1.9	12
95	Memorial Tribute to Yang Kwong Chen, MD. Pancreas, 2011, 40, 337-338.	1.1	O
96	Unperturbed islet αâ€eell function examined in mouse pancreas tissue slices. Journal of Physiology, 2011, 589, 395-408.	2.9	61
97	Electrophysiological identification of mouse islet $\hat{l}\pm$ -cells: From isolated single $\hat{l}\pm$ -cells to in situ assessment within pancreas slices. Islets, 2011, 3, 139-143.	1.8	18
98	SUMOylation Regulates Insulin Exocytosis Downstream of Secretory Granule Docking in Rodents and Humans. Diabetes, 2011, 60, 838-847.	0.6	84
99	Vesicle-associated Membrane Protein 8 (VAMP8) Is a SNARE (Soluble N-Ethylmaleimide-sensitive Factor) Tj ETQq1 of Biological Chemistry, 2011, 286, 29627-29634.	1 0.78431 3.4	l4 rgBT /O∨ 73
100	Syntaxin-1A Interacts with Distinct Domains within Nucleotide-binding Folds of Sulfonylurea Receptor 1 to Inhibit \hat{l}^2 -Cell ATP-sensitive Potassium Channels. Journal of Biological Chemistry, 2011, 286, 23308-23318.	3.4	14
101	ATP Modulates Interaction of Syntaxin-1A with Sulfonylurea Receptor 1 to Regulate Pancreatic \hat{l}^2 -Cell KATP Channels*. Journal of Biological Chemistry, 2011, 286, 5876-5883.	3.4	15
102	Live pancreatic acinar imaging of exocytosis using syncollin-pHluorin. American Journal of Physiology - Cell Physiology, 2011, 300, C1513-C1523.	4.6	27
103	Syntaxin 1A regulates surface expression of \hat{l}^2 -cell ATP-sensitive potassium channels. American Journal of Physiology - Cell Physiology, 2011, 300, C506-C516.	4.6	28
104	Deletion of $\langle i \rangle$ Pten $\langle i \rangle$ in Pancreatic \hat{l}^2 -Cells Protects Against Deficient \hat{l}^2 -Cell Mass and Function in Mouse Models of Type 2 Diabetes. Diabetes, 2010, 59, 3117-3126.	0.6	59
105	Erythropoietin protects against diabetes through direct effects on pancreatic \hat{l}^2 cells. Journal of Experimental Medicine, 2010, 207, 2831-2842.	8.5	119
106	Insulin treatment and high-fat diet feeding reduces the expression of three Tcf genes in rodent pancreas. Journal of Endocrinology, 2010, 207, 77-86.	2.6	22
107	Hypoxia–reoxygenation increase invasiveness of PANC-1 cells through Rac1/MMP-2. Biochemical and Biophysical Research Communications, 2010, 393, 371-376.	2.1	31
108	Nitric oxide activation of a potassium channel (BK _{Ca}) in feline lower esophageal sphincter. World Journal of Gastroenterology, 2010, 16, 5852.	3.3	6

#	Article	IF	CITATIONS
109	Characterization of Erg K+ Channels in \hat{l}_{\pm} - and \hat{l}^2 -Cells of Mouse and Human Islets. Journal of Biological Chemistry, 2009, 284, 30441-30452.	3.4	42
110	POU Homeodomain Protein Oct-1 Functions as a Sensor for Cyclic AMP. Journal of Biological Chemistry, 2009, 284, 26456-26465.	3.4	33
111	Cab45b, a Munc18b-interacting Partner, Regulates Exocytosis in Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2009, 284, 20840-20847.	3.4	8
112	Rescue of Munc18-1 and -2 Double Knockdown Reveals the Essential Functions of Interaction between Munc18 and Closed Syntaxin in PC12 Cells. Molecular Biology of the Cell, 2009, 20, 4962-4975.	2.1	73
113	Rescuing the Subprime Meltdown in Insulin Exocytosis in Diabetes. Annals of the New York Academy of Sciences, 2009, 1152, 154-164.	3.8	19
114	New Insights Into the Mechanisms of Pancreatitis. Gastroenterology, 2009, 136, 2040-2044.	1.3	98
115	Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitisâ€associated lung injury in mice. Experimental Physiology, 2008, 93, 1091-1103.	2.0	27
116	Pancreatic Islet α Cell Commands Itself: Secrete More Glucagon!. Cell Metabolism, 2008, 7, 474-475.	16.2	6
117	The RalA GTPase Is a Central Regulator of Insulin Exocytosis from Pancreatic Islet Beta Cells. Journal of Biological Chemistry, 2008, 283, 17939-17945.	3.4	40
118	Syntaxin-1A inhibition of P-1075, cromakalim, and diazoxide actions on mouse cardiac ATP-sensitive potassium channel. Cardiovascular Research, 2008, 80, 365-374.	3.8	10
119	Inhibition of Cholesterol Biosynthesis Impairs Insulin Secretion and Voltage-Gated Calcium Channel Function in Pancreatic β-Cells. Endocrinology, 2008, 149, 5136-5145.	2.8	114
120	Botulinum Neurotoxin A and Neurotoxin E Cleavage Products of Synaptosome-Associated Protein of 25 kd Exhibit Distinct Actions on Pancreatic Islet 12-Cell Kv2.1 Channel Gating. Pancreas, 2008, 36, 10-17.	1.1	13
121	VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. Journal of Clinical Investigation, 2008, 118, 2535-51.	8.2	77
122	Munc18/SNARE proteins' regulation of exocytosis in guinea pig duodenal Brunner's gland acini. World Journal of Gastroenterology, 2008, 14, 2314.	3.3	8
123	Distinct In Vivo Roles of Caspase-8 in Â-Cells in Physiological and Diabetes Models. Diabetes, 2007, 56, 2302-2311.	0.6	63
124	Ca2+-dependent Activator Protein for Secretion 1 Is Critical for Constitutive and Regulated Exocytosis but Not for Loading of Transmitters into Dense Core Vesicles. Journal of Biological Chemistry, 2007, 282, 21392-21403.	3.4	42
125	Interaction Between Munc13-1 and RIM Is Critical for Glucagon-Like Peptide-1 Mediated Rescue of Exocytotic Defects in Munc13-1 Deficient Pancreatic A-Cells. Diabetes, 2007, 56, 2579-2588.	0.6	61
126	Distinct modulation of Kv1.2 channel gating by wild type, but not open form, of syntaxin-1A. American Journal of Physiology - Renal Physiology, 2007, 292, G1233-G1242.	3.4	6

#	Article	IF	CITATIONS
127	The Actions of a Novel Potent Islet β-Cell–Specific ATP-Sensitive K+ Channel Opener Can Be Modulated by Syntaxin-1A Acting on Sulfonylurea Receptor 1. Diabetes, 2007, 56, 2124-2134.	0.6	14
128	SNAREing Voltage-Gated K+ and ATP-Sensitive K+ Channels: Tuning \hat{l}^2 -Cell Excitability with Syntaxin-1A and Other Exocytotic Proteins. Endocrine Reviews, 2007, 28, 653-663.	20.1	97
129	Targeting of Voltage-Gated K+and Ca2+Channels and SolubleN-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Proteins to Cholesterol-Rich Lipid Rafts in Pancreatic α-Cells: Effects on Glucagon Stimulus-Secretion Coupling. Endocrinology, 2007, 148, 2157-2167.	2.8	50
130	Alcohol/Cholecystokinin-evoked Pancreatic Acinar Basolateral Exocytosis Is Mediated by Protein Kinase Cα Phosphorylation of Munc18c. Journal of Biological Chemistry, 2007, 282, 13047-13058.	3.4	63
131	Dynamin Is Functionally Coupled to Insulin Granule Exocytosis. Journal of Biological Chemistry, 2007, 282, 33530-33536.	3.4	36
132	A Cytosolic Splice Variant of Cab45 Interacts with Munc18b and Impacts on Amylase Secretion by Pancreatic Acini. Molecular Biology of the Cell, 2007, 18, 2473-2480.	2.1	28
133	Effects of Palmitate on Insulin Secretion and Exocytotic Proteins in Islets of Diabetic Goto-Kakizaki Rats. Pancreas, 2007, 34, 359-363.	1.1	15
134	Activation of Exchange Protein Directly Activated by Cyclic Adenosine Monophosphate and Protein Kinase A Regulate Common and Distinct Steps in Promoting Plasma Membrane Exocytic and Granule-to-Granule Fusions in Rat Islet Î ² Cells. Pancreas, 2007, 35, e45-e54.	1.1	26
135	Modulation of the Kv4.3 channel by syntaxin 1A. Biochemical and Biophysical Research Communications, 2007, 358, 789-795.	2.1	4
136	Alcohol-Induced Protein Kinase Cα Phosphorylation of Munc18c in Carbachol-Stimulated Acini Causes Basolateral Exocytosis. Gastroenterology, 2007, 132, 1527-1545.	1.3	42
137	Recent insights into the cellular mechanisms of acute pancreatitis. Canadian Journal of Gastroenterology & Hepatology, 2007, 21, 19-24.	1.7	31
138	Alcohol Redirects CCKâ€Mediated Apical Exocytosis to the Acinar Basolateral Membrane in Alcoholic Pancreatitis. Traffic, 2007, 8, 605-617.	2.7	44
139	Characterization of SNAP-25 gene from marine teleostean, Lateolabrax japonicus. Chinese Journal of Oceanology and Limnology, 2007, 25, 378-385.	0.7	0
140	Involvement of VAMP-2 in exocytosis of IL- $1\hat{l}^2$ in turbot (Scophthalmus maximus) leukocytes after Vibrio anguillarum infection. Biochemical and Biophysical Research Communications, 2006, 342, 509-513.	2.1	14
141	Two populations of pancreatic islet α-cells displaying distinct Ca2+ channel properties. Biochemical and Biophysical Research Communications, 2006, 345, 340-344.	2.1	18
142	Insulin Regulates Islet α-Cell Function by Reducing KATP Channel Sensitivity to Adenosine 5′-Triphosphate Inhibition. Endocrinology, 2006, 147, 2155-2162.	2.8	74
143	Munc13-1 Deficiency Reduces Insulin Secretion and Causes Abnormal Glucose Tolerance. Diabetes, 2006, 55, 1421-1429.	0.6	95
144	Target Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptors (t-SNAREs) Differently Regulate Activation and Inactivation Gating of Kv2.2 and Kv2.1: Implications on Pancreatic Islet Cell Kv Channels. Molecular Pharmacology, 2006, 70, 818-828.	2.3	17

#	Article	IF	CITATIONS
145	Impaired Gene and Protein Expression of Exocytotic Soluble N-Ethylmaleimide Attachment Protein Receptor Complex Proteins in Pancreatic Islets of Type 2 Diabetic Patients. Diabetes, 2006, 55, 435-440.	0.6	206
146	The Neuronal Ca2+ Sensor Protein Visinin-like Protein-1 Is Expressed in Pancreatic Islets and Regulates Insulin Secretion. Journal of Biological Chemistry, 2006, 281, 21942-21953.	3.4	53
147	Syntaxin-1A Actions on Sulfonylurea Receptor 2A Can Block Acidic pH-induced Cardiac KATP Channel Activation. Journal of Biological Chemistry, 2006, 281, 19019-19028.	3.4	10
148	Caspase-3-Dependent \hat{l}^2 -Cell Apoptosis in the Initiation of Autoimmune Diabetes Mellitus. Molecular and Cellular Biology, 2005, 25, 3620-3629.	2.3	129
149	Glucagon-Like Peptide 1 Regulates Sequential and Compound Exocytosis in Pancreatic Islet Â-Cells. Diabetes, 2005, 54, 2734-2743.	0.6	73
150	Open form of syntaxin-1A is a more potent inhibitor than wild-type syntaxin-1A of Kv2.1 channels. Biochemical Journal, 2005, 387, 195-202.	3.7	29
151	Electrophysiological Characterization of Pancreatic Islet Cells in the Mouse Insulin Promoter-Green Fluorescent Protein Mouse. Endocrinology, 2005, 146, 4766-4775.	2.8	71
152	Transgenic Mouse Overexpressing Syntaxin-1A as a Diabetes Model. Diabetes, 2005, 54, 2744-2754.	0.6	49
153	Disruption of Pancreatic \hat{I}^2 -Cell Lipid Rafts Modifies Kv2.1 Channel Gating and Insulin Exocytosis. Journal of Biological Chemistry, 2004, 279, 24685-24691.	3.4	159
154	Syntaxin-1A Inhibits Cardiac KATP Channels by Its Actions on Nucleotide Binding Folds 1 and 2 of Sulfonylurea Receptor 2A. Journal of Biological Chemistry, 2004, 279, 47125-47131.	3.4	38
155	Syntaxin-1A Binds the Nucleotide-binding Folds of Sulphonylurea Receptor 1 to Regulate the KATP Channel. Journal of Biological Chemistry, 2004, 279, 4234-4240.	3.4	56
156	H3 Domain of Syntaxin 1A Inhibits KATP Channels by Its Actions on the Sulfonylurea Receptor 1 Nucleotide-Binding Folds-1 and -2. Journal of Biological Chemistry, 2004, 279, 53259-53265.	3.4	34
157	Alcoholic Chronic Pancreatitis Involves Displacement of Munc18c From the Pancreatic Acinar Basal Membrane Surface. Pancreas, 2004, 28, 395-400.	1.1	18
158	SNAP-25 inhibits L-type Ca2+ channels in feline esophagus smooth muscle cells. Biochemical and Biophysical Research Communications, 2003, 306, 298-302.	2.1	4
159	Regulation of Insulin Exocytosis by Munc13-1. Journal of Biological Chemistry, 2003, 278, 27556-27563.	3.4	98
160	Syntaxin 1A Binds to the Cytoplasmic C Terminus of Kv2.1 to Regulate Channel Gating and Trafficking. Journal of Biological Chemistry, 2003, 278, 17532-17538.	3.4	116
161	Direct Interaction of Target SNAREs with the Kv2.1 Channel. Journal of Biological Chemistry, 2003, 278, 34320-34330.	3.4	69
162	Modulation of L-Type Ca2+ Channels by Distinct Domains Within SNAP-25. Diabetes, 2002, 51, 1425-1436.	0.6	76

#	Article	IF	Citations
163	The 25-kDa Synaptosome-associated Protein (SNAP-25) Binds and Inhibits Delayed Rectifier Potassium Channels in Secretory Cells. Journal of Biological Chemistry, 2002, 277, 20195-20204.	3.4	42
164	Abnormal Expression of Pancreatic Islet Exocytotic SolubleN-Ethylmaleimide-Sensitive Factor Attachment Protein Receptors in Goto-Kakizaki Rats Is Partially Restored by Phlorizin Treatment and Accentuated by High Glucose Treatment. Endocrinology, 2002, 143, 4218-4226.	2.8	89
165	Synaptosome-Associated Protein of 25 Kilodaltons Modulates Kv2.1 Voltage-Dependent K+ Channels in Neuroendocrine Islet \hat{l}^2 -Cells through an Interaction with the Channel N Terminus. Molecular Endocrinology, 2002, 16, 2452-2461.	3.7	79
166	Effects of Selective Endocrine or Exocrine Induction of AR42J on SNARE and Munc18 Protein Expression. Pancreas, 2002, 25, e56-e63.	1.1	5
167	Visualization of Sequential Exocytosis in Rat Pancreatic Islet \hat{l}^2 Cells. Biochemical and Biophysical Research Communications, 2002, 292, 980-986.	2.1	36
168	Ca ²⁺ influx and cAMP elevation overcame botulinum toxin A but not tetanus toxin inhibition of insulin exocytosis. American Journal of Physiology - Cell Physiology, 2001, 281, C740-C750.	4.6	22
169	Cholecystokinin-Regulated Exocytosis in Rat Pancreatic Acinar Cells is Inhibited by a C-Terminus Truncated Mutant of SNAP-23. Pancreas, 2001, 23, 125-133.	1.1	39
170	Members of the Kv1 and Kv2 Voltage-Dependent K+ Channel Families Regulate Insulin Secretion. Molecular Endocrinology, 2001, 15, 1423-1435.	3.7	176
171	Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane. Journal of Clinical Investigation, 2001, 108, 1597-1611.	8.2	66
172	A Hypothesis: SNARE-ing the Mechanisms of Regulated Exocytosis and Pathologic Membrane Fusions in the Pancreatic Acinar Cell. Pancreas, 2000, 20, 217-226.	1.1	32
173	Mutations to the Third Cytoplasmic Domain of the Glucagon-Like Peptide 1 (GLP-1) Receptor Can Functionally Uncouple GLP-1-Stimulated Insulin Secretion in HIT-T15 Cells. Molecular Endocrinology, 1999, 13, 1305-1317.	3.7	39
174	Snare Protein Expression and Adenoviral Transfection of Amphicrine AR42J. Biochemical and Biophysical Research Communications, 1999, 260, 781-784.	2.1	20
175	Truncated SNAP-25 (1–197), Like Botulinum Neurotoxin A, Can Inhibit Insulin Secretion from HIT-T15 Insulinoma Cells. Molecular Endocrinology, 1998, 12, 1060-1070.	3.7	65
176	Protein tyrosine phosphorylation in pancreatic acini: differential effects of VIP and CCK. American Journal of Physiology - Renal Physiology, 1997, 273, G1226-G1232.	3.4	3
177	Suppression of Ca2+ oscillations induced by cholecystokinin (CCK) and its analog OPE in rat pancreatic acinar cells by low-level protein kinase C activation without transition of the CCK receptor from a high- to low-affinity state. Pflugers Archiv European Journal of Physiology, 1994, 427, 455-462.	2.8	8
178	Low Concentrations of Protein Kinase C-Activating Agonists Suppress Cholecystokinin-OPE-Evoked Ca2+ Mobilization in Rat Pancreatic Acini. Pancreas, 1994, 9, 450-453.	1.1	2
179	Complex role of protein kinase C in mediating the supramaximal inhibition of pancreatic secretion observed with cholecystokinin. Biochemical and Biophysical Research Communications, 1992, 187, 498-506.	2.1	15
180	Binding of a phenethyl ester analogue of cholecystokinin to the solubilized pancreatic cholecystokinin receptor: Use in ligand-affinity chromatography. Biochemical and Biophysical Research Communications, 1992, 183, 396-404.	2.1	12

#	Article	IF	CITATIONS
181	Establishment of a new short, protease-resistant, affinity labeling reagent for the cholecystokinin receptor. Biochemical and Biophysical Research Communications, 1987, 147, 346-353.	2.1	29
182	Large Molecular Forms of Cholecystokinin Circulating in Humans. Pancreas, 1986, 1, 148-153.	1.1	7