Jane S Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10240931/publications.pdf

Version: 2024-02-01

7348 15504 23,760 165 65 152 citations h-index g-index papers 174 174 174 8904 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Halogen bonding: the $\dagger f$ -hole. Journal of Molecular Modeling, 2007, 13, 291-296.	1.8	2,004
2	Halogen bonding and other lf -hole interactions: a perspective. Physical Chemistry Chemical Physics, 2013, 15, 11178.	2.8	1,401
3	Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Physical Chemistry Chemical Physics, 2010, 12, 7748.	2.8	1,389
4	An overview of halogen bonding. Journal of Molecular Modeling, 2007, 13, 305-311.	1.8	1,284
5	The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 153-163.	14.6	1,049
6	Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. Journal of Molecular Modeling, 2010, 16, 1679-1691.	1.8	985
7	The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 2002, 108, 134-142.	1.4	965
8	Expansion of the $\ddot{l}f$ -hole concept. Journal of Molecular Modeling, 2009, 15, 723-729.	1.8	669
9	Halogen Bonding: An Interim Discussion. ChemPhysChem, 2013, 14, 278-294.	2.1	620
10	Ïf-Holes, Ï€-holes and electrostatically-driven interactions. Journal of Molecular Modeling, 2012, 18, 541-548.	1.8	545
11	Ïf-hole bonding: molecules containing group VI atoms. Journal of Molecular Modeling, 2007, 13, 1033-1038.	1.8	475
12	Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. Journal of Molecular Modeling, 2011, 17, 3309-3318.	1.8	374
13	Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. International Journal of Quantum Chemistry, 1992, 44, 57-64.	2.0	370
14	$\ddot{l}f$ -hole bonding between like atoms; a fallacy of atomic charges. Journal of Molecular Modeling, 2008, 14, 659-665.	1.8	368
15	An electrostatic interaction correction for improved crystal density prediction. Molecular Physics, 2009, 107, 2095-2101.	1.7	365
16	Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. Journal of Molecular Modeling, 2007, 13, 643-650.	1.8	342
17	A predicted new type of directional noncovalent interaction. International Journal of Quantum Chemistry, 2007, 107, 2286-2292.	2.0	341
18	Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam's Razor). Computational and Theoretical Chemistry, 2012, 998, 2-8.	2.5	333

#	Article	IF	Citations
19	The $led{l}_f$ -hole revisited. Physical Chemistry Chemical Physics, 2017, 19, 32166-32178.	2.8	319
20	Ïf-Hole bonding and hydrogen bonding: Competitive interactions. International Journal of Quantum Chemistry, 2007, 107, 3046-3052.	2.0	305
21	Br···O Complexes as Probes of Factors Affecting Halogen Bonding: Interactions of Bromobenzenes and Bromopyrimidines with Acetone. Journal of Chemical Theory and Computation, 2009, 5, 155-163.	5.3	303
22	Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO ₂ /N–NO ₂ bond dissociation energies. Molecular Physics, 2009, 107, 89-97.	1.7	280
23	Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. Computational and Theoretical Chemistry, 1998, 425, 107-114.	1.5	255
24	Directional tendencies of halogen and hydrogen bonds. International Journal of Quantum Chemistry, 2010, 110, 2823-2832.	2.0	243
25	Directional Weak Intermolecular Interactions: Ïf-Hole Bonding. Australian Journal of Chemistry, 2010, 63, 1598.	0.9	235
26	Blue shifts vs red shifts in lf -hole bonding. Journal of Molecular Modeling, 2008, 14, 699-704.	1.8	231
27	Molecular electrostatic potentials and noncovalent interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1326.	14.6	231
28	Fluorine-Centered Halogen Bonding: A Factor in Recognition Phenomena and Reactivity. Crystal Growth and Design, 2011, 11, 4238-4246.	3.0	225
29	Trends in \ddot{l} f-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). Journal of Molecular Modeling, 2013, 19, 2739-2746.	1.8	219
30	Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. International Journal of Quantum Chemistry, 2001, 85, 676-684.	2.0	217
31	The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm, 2011, 13, 6593.	2.6	217
32	Polarizability and volume. Journal of Chemical Physics, 1993, 98, 4305-4306.	3.0	216
33	Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. Journal of Molecular Modeling, 2013, 19, 4651-4659.	1.8	190
34	Simultaneous Ïfâ€hole and hydrogen bonding by sulfur―and seleniumâ€containing heterocycles. International Journal of Quantum Chemistry, 2008, 108, 2770-2781.	2.0	172
35	The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes. International Journal of Quantum Chemistry, 2002, 88, 19-27.	2.0	166
36	Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts. Canadian Journal of Chemistry, 1995, 73, 483-488.	1.1	164

#	Article	IF	Citations
37	Why are dimethyl sulfoxide and dimethyl sulfone such good solvents?. Journal of Molecular Modeling, 2008, 14, 689-697.	1.8	159
38	Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Molecular Physics, 1995, 85, 1-8.	1.7	157
39	Molecular Electrostatic Potentials and Chemical Reactivity. Reviews in Computational Chemistry, 2007, , 273-312.	1.5	153
40	Comparison of density functional and Hartree-Fock average local ionization energies on molecular surfaces. International Journal of Quantum Chemistry, 1998, 69, 607-613.	2.0	152
41	Ïf-Hole Interactions of Covalently-Bonded Nitrogen, Phosphorus and Arsenic: A Survey of Crystal Structures. Crystals, 2014, 4, 12-31.	2.2	149
42	Molecular surface electrostatic potentials and local ionization energies of Group V-VII hydrides and their anions: Relationships for aqueous and gas-phase acidities. International Journal of Quantum Chemistry, 1993, 48, 73-88.	2.0	146
43	Ïf-Hole Interactions: Perspectives and Misconceptions. Crystals, 2017, 7, 212.	2.2	145
44	Correlations between the solvent hydrogen-bond-donating parameter .alpha. and the calculated molecular surface electrostatic potential. Journal of Organic Chemistry, 1991, 56, 6715-6717.	3.2	133
45	Ïf-Hole Bonding: A Physical Interpretation. Topics in Current Chemistry, 2014, 358, 19-42.	4.0	133
46	Ïfâ€holes and Ï€â€holes: Similarities and differences. Journal of Computational Chemistry, 2018, 39, 464-471.	3.3	127
47	Average local ionization energies computed on the surfaces of some strained molecules. International Journal of Quantum Chemistry, 1990, 38, 645-653.	2.0	126
48	Correlations between the solvent hydrogen bond acceptor parameter .beta. and the calculated molecular electrostatic potential. Journal of Organic Chemistry, 1991, 56, 3734-3737.	3.2	122
49	The reaction force: Three key points along an intrinsic reaction coordinate. Journal of Chemical Sciences, 2005, 117, 467-472.	1.5	122
50	Quantitative determination of the total local polarity (charge separation) in molecules. Molecular Physics, 1992, 76, 609-617.	1.7	118
51	Impact sensitivity and the maximum heat of detonation. Journal of Molecular Modeling, 2015, 21, 262.	1.8	107
52	Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with F–Cl and Cl2. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	102
53	Correct electrostatic treatment of noncovalent interactions: the importance of polarization. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 169-177.	14.6	97
54	An Overview of Strengths and Directionalities of Noncovalent Interactions: σ-Holes and π-Holes. Crystals, 2019, 9, 165.	2.2	94

#	Article	IF	CITATIONS
55	Electronegativity and the concept of charge capacity. Computational and Theoretical Chemistry, 1992, 259, 99-120.	1.5	91
56	Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials. Fluid Phase Equilibria, 2001, 185, 129-137.	2.5	89
57	Radial behavior of the average local ionization energies of atoms. Journal of Chemical Physics, 1991, 95, 6699-6704.	3.0	88
58	Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. Journal of Computational Science, 2015, 10, 209-216.	2.9	83
59	Atomic polarizability, volume and ionization energy. Journal of Chemical Physics, 2002, 117, 8197-8202.	3.0	82
60	Halogen bonding in hypervalent iodine and bromine derivatives: halonium salts. IUCrJ, 2017, 4, 411-419.	2.2	80
61	C-NO2dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules. Molecular Physics, 1995, 86, 251-255.	1.7	79
62	Electrostatics and Polarization in Ïf―and Ï€â€Hole Noncovalent Interactions: An Overview. ChemPhysChem, 2020, 21, 579-588.	2.1	78
63	Factors affecting the strengths of if -hole electrostatic potentials. Journal of Computational Science, 2014, 5, 590-596.	2.9	76
64	An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Molecular Physics, 2010, 108, 1391-1396.	1.7	75
65	Quantitative Analyses of Molecular Surface Electrostatic Potentials in Relation to Hydrogen Bonding and Co-Crystallization. Crystal Growth and Design, 2015, 15, 3767-3774.	3.0	74
66	Prediction of Aqueous Solvation Free Energies from Properties of Solute Molecular Surface Electrostatic Potentials. Journal of Physical Chemistry A, 1999, 103, 1853-1856.	2.5	64
67	Directional Noncovalent Interactions: Repulsion and Dispersion. Journal of Chemical Theory and Computation, 2013, 9, 2264-2275.	5.3	64
68	Density functional study of dimers of dimethylnitramine. International Journal of Quantum Chemistry, 2000, 80, 184-192.	2.0	62
69	Comparative analysis of electrostatic potential maxima and minima on molecular surfaces, as determined by three methods and a variety of basis sets. Journal of Computational Science, 2016, 17, 273-284.	2.9	62
70	Close contacts and noncovalent interactions in crystals. Faraday Discussions, 2017, 203, 113-130.	3.2	62
71	Nonlocal density functional calculation of gas phase heats of formation. Journal of Computational Chemistry, 1995, 16, 654-658.	3.3	59
72	Interaction and Polarization Energy Relationships in σ-Hole and π-Hole Bonding. Crystals, 2020, 10, 76.	2.2	58

#	Article	IF	CITATIONS
73	Average Local Ionization Energies as a Route to Intrinsic Atomic Electronegativities. Journal of Chemical Theory and Computation, 2011, 7, 377-384.	5.3	55
74	Fluorination promotes chalcogen bonding in crystalline solids. CrystEngComm, 2017, 19, 4955-4959.	2.6	53
75	Computational characterization of nucleotide bases: Molecular surface electrostatic potentials and local ionization energies, and local polarization energies. International Journal of Quantum Chemistry, 2001, 83, 245-254.	2.0	50
76	Relationships between Lattice Energies and Surface Electrostatic Potentials and Areas of Anions. Journal of Physical Chemistry A, 1998, 102, 1018-1020.	2.5	47
77	Density Functional Tight-Binding Studies of Carbon Nanotube Structures. Structural Chemistry, 2003, 14, 431-443.	2.0	44
78	Local ionization energy and local polarizability. International Journal of Quantum Chemistry, 2004, 96, 394-401.	2.0	43
79	Electrostatically driven complexes of SiF ₄ with amines. International Journal of Quantum Chemistry, 2009, 109, 3773-3780.	2.0	43
80	Electronegativityâ€"a perspective. Journal of Molecular Modeling, 2018, 24, 214.	1.8	43
81	Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition. CrystEngComm, 2013, 15, 3145.	2.6	42
82	The Ïfâ∈Hole Coulombic Interpretation of Trihalide Anion Formation. ChemPhysChem, 2018, 19, 3044-3049.	2.1	42
83	The Hellmann-Feynman theorem: a perspective. Journal of Molecular Modeling, 2018, 24, 266.	1.8	42
84	The use and misuse of van der Waals radii. Structural Chemistry, 2021, 32, 623-629.	2.0	42
85	Hydrogen Bonding: A Coulombic Ïf-Hole Interaction. Journal of the Indian Institute of Science, 2020, 100, 21-30.	1.9	41
86	The π-hole revisited. Physical Chemistry Chemical Physics, 2021, 23, 16458-16468.	2.8	41
87	The use of the electrostatic potential at the molecular surface in recognition interactions: Dibenzo-p-dioxinsand related systems. Journal of Molecular Graphics, 1990, 8, 81-85.	1.1	37
88	The unique role of the nitro group in intramolecular interactions: chloronitromethanes. Structural Chemistry, 2010, 21, 139-146.	2.0	37
89	Computational analysis of relative stabilities of polyazine N-oxides. Structural Chemistry, 2013, 24, 1965-1974.	2.0	37
90	Relationships between aqueous acidities and computed surface-electrostatic potentials and local ionization energies of substituted phenols and benzoic acids. Journal of Molecular Modeling, 2004, 10, 235.	1.8	33

#	Article	IF	CITATIONS
91	Can Counterâ€Intuitive Halogen Bonding Be Coulombic?. ChemPhysChem, 2021, 22, 1201-1207.	2.1	33
92	Molecular electrostatic potentials as indicators of covalent radii. Journal of Chemical Physics, 1996, 104, 5109-5111.	3.0	32
93	Does antiaromaticity imply net destabilization?. International Journal of Quantum Chemistry, 1994, 49, 575-579.	2.0	31
94	Computational determination of effects of electric fields upon "trigger linkages―of prototypical energetic molecules. International Journal of Quantum Chemistry, 2009, 109, 534-539.	2.0	31
95	Relationship between Measured Diffusion Coefficients and Calculated Molecular Surface Properties. The Journal of Physical Chemistry, 1996, 100, 5538-5540.	2.9	30
96	A noteworthy feature of bond dissociation/formation reactions. International Journal of Quantum Chemistry, 2007, 107, 2153-2157.	2.0	30
97	Analysis of diatomic bond dissociation and formation in terms of the reaction force and the position-dependent reaction force constant. Journal of Molecular Modeling, 2009, 15, 701-706.	1.8	30
98	Enhanced detonation sensitivities of silicon analogs of PETN: reaction force analysis and the role of $\ f\ _{L^{\infty}}$ interactions. Theoretical Chemistry Accounts, 2010, 127, 345-354.	1.4	30
99	A comparative analysis of the electrostatic potentials of some structural analogues of 2,3,7,8-tetrachlorodibenzo-p-dioxin and of related aromatic systems. International Journal of Quantum Chemistry, 1990, 37, 271-289.	2.0	29
100	Conformational dependence of molecular surface electrostatic potentials. International Journal of Quantum Chemistry, 1999, 75, 267-273.	2.0	29
101	Reaction force analyses of nitro-aci tautomerizations of trinitromethane, the elusive trinitromethanol, picric acid and 2,4-dinitro-1H-imidazole. Theoretical Chemistry Accounts, 2009, 124, 355-363.	1.4	29
102	A look at bonds and bonding. Structural Chemistry, 2019, 30, 1153-1157.	2.0	29
103	An analysis of molecular electrostatic potentials obtained by a local density functional approach. International Journal of Quantum Chemistry, 1992, 44, 113-122.	2.0	28
104	Computed molecular surface electrostatic potentials of the nonionic and zwitterionic forms of glycine, histidine, and tetracycline. International Journal of Quantum Chemistry, 2000, 80, 1216-1223.	2.0	28
105	Molecular surface electrostatic potentials as guides to Si-O-N angle contraction: tunable \ddot{l}_f -holes. Journal of Molecular Modeling, 2011, 17, 2151-2157.	1.8	27
106	Some interesting aspects of N-oxides. Molecular Physics, 2014, 112, 719-725.	1.7	27
107	Perspectives on the crystal densities and packing coefficients of explosive compounds. Structural Chemistry, 2016, 27, 401-408.	2.0	26
108	An Occam's razor approach to chemical hardness: lex parsimoniae. Journal of Molecular Modeling, 2018, 24, 332.	1.8	26

#	Article	IF	Citations
109	Tetrel and Pnictogen Bonds Complement Hydrogen and Halogen Bonds in Framing the Interactional Landscape of Barbituric Acids. Crystal Growth and Design, 2021, 21, 642-652.	3.0	26
110	Surface local ionization energies and electrostatic potentials of the conjugate bases of a series of cyclic hydrocarbons in relation to their aqueous acidities. International Journal of Quantum Chemistry, 1991, 40, 91-98.	2.0	25
111	Effects of the simultaneous presence of nitro and amine substituents in cubane and some azacubanes. Structural Chemistry, 1991, 2, 153-166.	2.0	25
112	Computed effects of electric fields upon the CīŁįNO ₂ and NīŁįNO ₂ bonds of nitromethane and dimethylnitramine. International Journal of Quantum Chemistry, 2009, 109, 3-7.	2.0	24
113	Electrostatic Potentials, Intralattice Attractive Forces and Crystal Densities of Nitrogen-Rich C,H,N,O Salts. Crystals, 2016, 6, 7.	2.2	24
114	Explicit Inclusion of Polarizing Electric Fields in σ- and π-Hole Interactions. Journal of Physical Chemistry A, 2019, 123, 10123-10130.	2.5	24
115	Electrostatic potentials at the nuclei of atoms and molecules. Theoretical Chemistry Accounts, 2021, $140,1.$	1.4	24
116	Ïf-Holes and Si···N intramolecular interactions. Journal of Molecular Modeling, 2019, 25, 101.	1.8	23
117	Hydrogen Bonding between Metalâ€lon Complexes and Noncoordinated Water: Electrostatic Potentials and Interaction Energies. ChemPhysChem, 2016, 17, 2035-2042.	2.1	22
118	A Unified View of Halogen Bonding, Hydrogen Bonding and Other If -Hole Interactions. Challenges and Advances in Computational Chemistry and Physics, 2015, , 291-321.	0.6	21
119	Some Perspectives on Sensitivity to Initiation of Detonation. , 2014, , 45-62.		20
120	X-NO2 rotational energy barriers: Local density functional calculations. International Journal of Quantum Chemistry, 1993, 45, 15-20.	2.0	19
121	Câ^'H and Câ^'NO2 Dissociation Energies in Some Azines and Nitroazines. Journal of Physical Chemistry A, 1998, 102, 6697-6701.	2.5	19
122	Computational prediction of relative group polarizabilities. International Journal of Quantum Chemistry, 2003, 95, 632-637.	2.0	19
123	Molecular surface electrostatic potentials of anticonvulsant drugs. International Journal of Quantum Chemistry, 1998, 70, 1137-1143.	2.0	17
124	Prediction of solvation free energies from computed properties of solute molecular surfaces. International Journal of Quantum Chemistry, 2000, 76, 643-647.	2.0	17
125	Intra- and intermolecular electrostatic interactions and their significance for the structure, acidity, and tautomerization behavior of trinitromethane. Journal of Chemical Physics, 2009, 130, 104304.	3.0	17
126	Revisiting the seemingly straightforward hydrogen cyanide/hydrogen isocyanide isomerisation. Molecular Physics, 2014, 112, 349-354.	1.7	17

#	Article	IF	CITATIONS
127	Computed molecular surface electrostatic potentials of two groups of reverse transcriptase inhibitors: Relationships to anti-HIV-1 activities. International Journal of Quantum Chemistry, 2001, 83, 115-121.	2.0	16
128	Computational analysis of polyazoles and their N-oxides. Structural Chemistry, 2017, 28, 1045-1063.	2.0	16
129	Chalcogen Bonds in Crystals of Bis(<i>o</i> -anilinium)diselenide Salts. Crystal Growth and Design, 2019, 19, 1149-1154.	3.0	16
130	The Neglected Nuclei. Molecules, 2021, 26, 2982.	3.8	16
131	Antiaromaticity in relation to 1,3,5,7-cyclooctatetraene structures. International Journal of Quantum Chemistry, 1994, 50, 273-277.	2.0	15
132	Electrostatic potential as a measure of gas phase carbocation stability. International Journal of Quantum Chemistry, 2006, 106, 2904-2909.	2.0	15
133	A computational analysis of some diaryl ureas in relation to their observed crystalline hydrogen bonding patterns. Molecular Engineering, 1991, 1, 75-87.	0.2	14
134	Foreword for Festschrift for Peter's 80th birthday. Journal of Molecular Modeling, 2018, 24, 1.	1.8	13
135	A computational analysis of the electrostatic potentials and relative bond strengths of hydrazine and some of its 1,1-dimethyl derivatives. International Journal of Quantum Chemistry, 1990, 37, 611-629.	2.0	12
136	Computational Determination of Heats of Formation of Energetic Compounds. Materials Research Society Symposia Proceedings, 1995, 418, 55.	0.1	12
137	Computational determination of the relative polarizabilities of molecular components. International Journal of Quantum Chemistry, 2006, 106, 2347-2355.	2.0	12
138	An Operational Definition of Relative Hardness. Collection of Czechoslovak Chemical Communications, 2007, 72, 51-63.	1.0	12
139	C?H Bond dissociation of acetylene: Local density functional calculations. International Journal of Quantum Chemistry, 1992, 42, 267-272.	2.0	11
140	Evaluation of a finite multipole expansion technique for the computation of electrostatic potentials of dibenzo-p-dioxins and related systems. Journal of Computational Chemistry, 1990, 11, 112-120.	3.3	9
141	Structures and molecular surface electrostatic potentials of high-density C, N, H systems. Structural Chemistry, 1996, 7, 273-280.	2.0	9
142	Computational characterization of the hydroxylamino (NHOH) group. Journal of Physical Organic Chemistry, 2008, 21, 155-162.	1.9	9
143	Identification of pseudodiatomic behavior in polyatomic bond dissociation: Reaction force analysis. Journal of Chemical Physics, 2010, 132, 154308.	3.0	9
144	Sensitivities of ionic explosives. Molecular Physics, 2017, 115, 497-509.	1.7	9

#	Article	IF	CITATIONS
145	The Kamletâ€Jacobs Parameter φ: A Measure of Intrinsic Detonation Potential. Propellants, Explosives, Pyrotechnics, 2019, 44, 844-849.	1.6	9
146	The role of  Excluded' electronic charge in noncovalent interactions. Molecular Physics, 2019, 117, 2260-2266.	1.7	9
147	Cyanine dyes: synergistic action of hydrogen, halogen and chalcogen bonds allows discrete I ₄ ^{2â^²} anions in crystals. New Journal of Chemistry, 2018, 42, 10463-10466.	2.8	8
148	In search of the â€~impenetrable' volume of a molecule in a noncovalent complex. Molecular Physics, 2018, 116, 570-577.	1.7	8
149	Are HOMO–LUMO gaps reliable indicators of explosive impact sensitivity?. Journal of Molecular Modeling, 2021, 27, 327.	1.8	8
150	Density functional theory study of Te(CN)2, Te(CN)(NC), and Te(NC)2 and their isomerizations. Structural Chemistry, 2013, 24, 2047-2057.	2.0	7
151	"Conformation pinning―by anion attachment enabling separation of isomeric steroid monomers by ion mobility spectrometry. Journal of Mass Spectrometry, 2020, 55, .	1.6	7
152	Analytical Representation and Prediction of Macroscopic Properties. ACS Symposium Series, 1995 , , $109-118$.	0.5	6
153	The Use of the Molecular Electrostatic Potential in Medicinal Chemistry. Methods and Principles in Medicinal Chemistry, 2005, , 233-254.	0.3	5
154	Electronegativity: A continuing enigma. Journal of Physical Organic Chemistry, 2023, 36, .	1.9	5
155	The influence of the metal cations and microhydration on the reaction trajectory of the N3 ât" O2 thymine proton transfer: Quantum mechanical study. Journal of Computational Chemistry, 2017, 38, 2680-2692.	3.3	4
156	THE FUNDAMENTAL SIGNIFICANCE OF ELECTROSTATIC POTENTIALS AT NUCLEI., 2002, , 63-84.		3
157	Anesthetic activity and the electrostatic potential (revisited). Journal of Molecular Modeling, 2018, 24, 19.	1.8	3
158	\ddot{l}_f -Holes vs. Buildups of Electronic Density on the Extensions of Bonds to Halogen Atoms. Inorganics, 2019, 7, 71.	2.7	3
159	Oxatriazoles: Potential Frameworks for Energetic Compounds?. Propellants, Explosives, Pyrotechnics, 2021, 46, 222-232.	1.6	3
160	General and Theoretical Aspects of the Cï $£_iX$ Bonds (X = F, Cl, Br, I): Integration of Theory and Experiment. , 0, , 1-30.		2
161	A general model for the solubilities of gases in liquids. Journal of Molecular Modeling, 2020, 26, 244.	1.8	2
162	A computational study of some isomerization equilibria and their possible relation to vinyl chloride carcinogenicity. International Journal of Quantum Chemistry, 1987, 31, 569-579.	2.0	1

#	Article	IF	CITATIONS
163	General and theoretical aspects of theOH,O andOO groups: Integration of theory and experiment. , 0, , 1-39.		1
164	Two potential energetic compounds: Ammonium superoxide and ammonium ozonide. Journal of Energetic Materials, 2000, 18, 89-95.	2.0	1
165	Interpreting the variations in the kinetic and potential energies in the formation of a covalent bond. Physical Chemistry Chemical Physics, 2022, , .	2.8	1