
Robert J Tomanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10240217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Angiogenesis: New insights and therapeutic potential. The Anatomical Record, 2000, 261, 126-135.	1.8	139
2	Myocardial morphology in spontaneously hypertensive and aortic-constricted rats. American Journal of Anatomy, 1978, 152, 141-151.	1.0	130
3	Formation of the coronary vasculature during development. Angiogenesis, 2005, 8, 273-284.	7.2	104
4	Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor Differentially Modulate Early Postnatal Coronary Angiogenesis. Circulation Research, 2001, 88, 1135-1141.	4.5	100
5	Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. , 1999, 215, 54-61.		99
6	Role of VEGF family members and receptors in coronary vessel formation. Developmental Dynamics, 2002, 225, 233-240.	1.8	91
7	VEGF Family Members Regulate Myocardial Tubulogenesis and Coronary Artery Formation in the Embryo. Circulation Research, 2006, 98, 947-953.	4.5	85
8	Early Coronary Angiogenesis in Response to Thyroxine. Circulation Research, 1998, 82, 587-593.	4.5	72
9	Stimulation of coronary vasculogenesis/angiogenesis by hypoxia in cultured embryonic hearts. Developmental Dynamics, 1999, 216, 28-36.	1.8	66
10	DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H613-H618.	3.2	62
11	Coordinated capillary and myocardial growth in response to thyroxine treatment. , 1998, 251, 44-49.		57
12	Multiple growth factors regulate coronary embryonic vasculogenesis. Developmental Dynamics, 2001, 221, 265-273.	1.8	45
13	Cytological differentiation of human fetal skeletal muscle. American Journal of Anatomy, 1977, 149, 227-245.	1.0	43
14	Morphological changes in the mechanically unloaded myocardial cell. The Anatomical Record, 1981, 200, 271-280.	1.8	41
15	Temporally Expressed PDGF and FGF-2 Regulate Embryonic Coronary Artery Formation and Growth. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1237-1243.	2.4	39
16	Bradycardia Stimulates Vascular Growth During Gradual Coronary Occlusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2122-2127.	2.4	37
17	The Coronary Microcirculation in Cyanotic Congenital Heart Disease. Circulation, 2006, 114, 196-200.	1.6	36
18	Growth factor activation in myocardial vascularization: Therapeutic implications. Molecular and Cellular Biochemistry, 2004, 264, 3-11.	3.1	29

Robert J Tomanek

#	Article	IF	CITATIONS
19	Embryology of coronary arteries and anatomy/pathophysiology of coronary anomalies. A comprehensive update. International Journal of Cardiology, 2019, 281, 28-34.	1.7	29
20	Developmental Progression of the Coronary Vasculature in Human Embryos and Fetuses. Anatomical Record, 2016, 299, 25-41.	1.4	27
21	Hypoxic Induction of Myocardial Vascularization During Development. Advances in Experimental Medicine and Biology, 2003, 543, 139-149.	1.6	26
22	Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Developmental Dynamics, 2010, 239, 3182-3191.	1.8	25
23	Vascular patterning of the quail coronary system during development. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 989-999.	2.0	24
24	Synectin/syndecan-4 regulate coronary arteriolar growth during development. Developmental Dynamics, 2007, 236, 2004-2010.	1.8	23
25	Coronary vessels and cardiac myocytes of middle-aged rats demonstrate regional sex-specific adaptation in response to postmyocardial infarction remodeling. Biology of Sex Differences, 2014, 5, 1.	4.1	22
26	The effects of chronic hypoxia on the myocardial cell of normotensive and hypertensive rats. The Anatomical Record, 1980, 196, 421-430.	1.8	20
27	Role of growth factors in coronary morphogenesis. Texas Heart Institute Journal, 2002, 29, 250-4.	0.3	20
28	Chronic Heart Rate Reduction Facilitates Cardiomyocyte Survival After Myocardial Infarction. Anatomical Record, 2010, 293, 839-848.	1.4	18
29	Coronary Vasculature. , 2013, , .		12
30	Young athletes: Preventing sudden death by adopting a modern screening approach? A critical review and the opening of a debate. IJC Heart and Vasculature, 2021, 34, 100790.	1.1	7
31	The coronary capillary bed and its role in blood flow and oxygen delivery: A review. Anatomical Record, 2022, 305, 3199-3211.	1.4	6
32	Differential effects of cyclic stretch and static stretch on angiogenic responses of microvascular endothelial cells. FASEB Journal, 2007, 21, A138.	0.5	2
33	Coronary Anomalies in Mice With Congenital Heart Defects. Anatomical Record, 2015, 298, 408-417.	1.4	1
34	Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Developmental Dynamics, 1999, 215, 54-61.	1.8	1
35	Stimulation of coronary vasculogenesis/angiogenesis by hypoxia in cultured embryonic hearts. Developmental Dynamics, 1999, 216, 28-36.	1.8	1
36	Angiogenesis and Arteriogenesis in Cardiac Hypertrophy. , 2007, , 253-280.		1

Angiogenesis and Arteriogenesis in Cardiac Hypertrophy. , 2007, , 253-280. 36

3

Robert J Tomanek

#	Article	IF	CITATIONS
37	Vasoactive intestinal polypeptide receptors (VIP1 and VIP2) are morphogenic modulators of embryonic coronary vessel tube formation. FASEB Journal, 2006, 20, .	0.5	0
38	Differential effects of cyclic and static stretch on expression of tyrosine kinase receptors in microvascular endothelial cells. FASEB Journal, 2006, 20, A22.	0.5	0
39	Postâ€Infarction Angiogenesis and Arteriogenesis. FASEB Journal, 2007, 21, A80.	0.5	Ο
40	FGF signaling is a major regulator of coronary tubulogenesis in the murine embryo. FASEB Journal, 2008, 22, 524.3.	0.5	0