Robert Lad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10239514/publications.pdf

Version: 2024-02-01

47 1,827
papers citations h-

23 42
h-index g-index

47 47 all docs docs citations

47 times ranked 2272 citing authors

#	Article	IF	CITATIONS
1	High-Temperature RF Transmission Loss Characteristics of Platinum–Inconel 600 and Platinum–304 Steel Interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 610-615.	2.5	O
2	Distinguishing Bulk Conduction from Band Bending Transduction Mechanisms in Chemiresistive Metal Oxide Gas Sensors. Journal of Physical Chemistry C, 2018, 122, 10607-10620.	3.1	20
3	Enhanced Crystallinity of hâ€BN Films Induced by Substrate Bias During Magnetron Sputtering. Physica Status Solidi (B): Basic Research, 2018, 255, 1700458.	1.5	3
4	Comparison of PtSi Films Grown by Solid-State Reaction and by E-Beam Co-Evaporation: Thermal Stability in Air at 1000 °C. MRS Advances, 2016, 1, 1539-1544.	0.9	1
5	Synthesis and thermal stability of Pt3Si, Pt2Si, and PtSi films grown by e-beam co-evaporation. Journal of Alloys and Compounds, 2016, 682, 216-224.	5.5	26
6	Nanostructure and bonding of zirconium diboride thin films studied by X-ray spectroscopy. Thin Solid Films, 2015, 596, 155-159.	1.8	8
7	Influence of composition and multilayer architecture on electrical conductivity of high temperature Pt-alloy films. Surface and Coatings Technology, 2015, 284, 215-221.	4.8	29
8	Energy Conversion Efficiency of an Exponentially Graded Thermoelectric Material. Journal of Electronic Materials, 2014, 43, 308-313.	2.2	26
9	High temperature stability of electrically conductive Pt–Rh/ZrO2 and Pt–Rh/HfO2 nanocomposite thin film electrodes. Microsystem Technologies, 2014, 20, 523-531.	2.0	40
10	Properties of amorphous SiAlON thin films grown by RF magnetron co-sputtering. Surface and Coatings Technology, 2014, 258, 1191-1195.	4.8	11
11	Properties of SiAlO2N protective coatings on surface acoustic wave devices. Thin Solid Films, 2013, 534, 198-204.	1.8	3
12	Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science. Journal of the American Ceramic Society, 2012, 95, 3699-3712.	3.8	59
13	Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition. Thin Solid Films, 2010, 518, 4095-4099.	1.8	64
14	Charge transport in flat and nanorod structured ruthenium thin films. Applied Physics Letters, 2010, 96, .	3.3	12
15	Structure and optical properties of $Zr1\hat{a}^{\circ}$ Si N thin films on sapphire. Thin Solid Films, 2009, 518, 1522-1526.	1.8	4
16	High temperature sensing technology for applications up to 1000°C., 2008,,.		13
17	A Multi-Parameter Platform For Gas Sensing Using Semiconducting Metal Oxide Films. , 2007, , .		O
18	Structure, conductivity, and optical absorption of Ag2â°'xO films. Thin Solid Films, 2007, 515, 8684-8688.	1.8	64

#	Article	IF	CITATIONS
19	Growth and structure of silver and silver oxide thin films on sapphire. Thin Solid Films, 2004, 468, 57-64.	1.8	62
20	Quantifying gas sensor and delivery system response time using GC/MS. Sensors and Actuators B: Chemical, 2003, 96, 200-214.	7.8	14
21	Heteroepitaxial growth of tungsten oxide films on silicon(100) using a BaF2 buffer layer. Journal of Materials Research, 2003, 18, 2859-2868.	2.6	14
22	In situfour-point conductivity and Hall effect apparatus for vacuum and controlled atmosphere measurements of thin film materials. Review of Scientific Instruments, 2002, 73, 2325-2330.	1.3	20
23	Defects and morphology of tungsten trioxide thin films. Thin Solid Films, 2002, 406, 79-86.	1.8	57
24	Heteroepitaxial growth of tungsten oxide films on sapphire for chemical gas sensors. Thin Solid Films, 2001, 400, 56-63.	1.8	62
25	Detection and quantification of nitric oxide in human breath using a semiconducting oxide based chemiresistive microsensor. Sensors and Actuators B: Chemical, 2001, 76, 226-234.	7.8	55
26	Stoichiometry and microstructure effects on tungsten oxide chemiresistive films. Sensors and Actuators B: Chemical, 2001, 77, 375-382.	7.8	141
27	Aggregation and sticking probability of gold on tungsten trioxide films. Sensors and Actuators B: Chemical, 2001, 76, 373-379.	7.8	17
28	Interaction of organophosphorous compounds with TiO2 and WO3 surfaces probed by vibrational spectroscopy. Sensors and Actuators B: Chemical, 2001, 76, 442-448.	7.8	98
29	Diffraction studies of cubic phase stability in undoped zirconia thin films. Journal of Materials Research, 2000, 15, 369-376.	2.6	18
30	Microstructural effects on the friction and wear of zirconia films in unlubricated sliding contact. Thin Solid Films, 1999, 347, 220-225.	1.8	39
31	The influence of microstructure on tribological properties of WO3 thin films. Wear, 1999, 232, 84-90.	3.1	57
32	Microstructural effects in WO3 gas-sensing films. Thin Solid Films, 1995, 256, 247-252.	1.8	69
33	Aluminum deposition on NiO(100): growth, structure and composition of the interface. Surface Science, 1993, 290, 35-44.	1.9	13
34	Electronic and chemical interactions at aluminum/TiO2(110) interfaces. Surface Science, 1993, 289, 297-306.	1.9	56
35	Layerâ€byâ€layer growth of epitaxial SnO2on sapphire by reactive sputter deposition. Applied Physics Letters, 1992, 61, 1921-1923.	3.3	46
36	Satellite structure in the photoemission spectra of MnO(100). Physical Review B, 1991, 43, 11971-11977.	3.2	40

#	Article	IF	CITATIONS
37	Photoemission study of the valence-band electronic structure inFexO,Fe3O4, andα-Fe2O3single crystals. Physical Review B, 1989, 39, 13478-13485.	3.2	179
38	Structure of \hat{l} ±-Fe2O3 single crystal surfaces following Ar+ ion bombardment and annealing in O2. Surface Science, 1988, 193, 81-93.	1.9	165
39	Reply to "comment on â€~structure of α-Fe2O3 single crystal surfaces following Ar+ ion bombardment and annealing in O2'―by E. Paparazzo. Surface Science, 1988, 200, L473-L474.	1.9	2
40	Electronic structure of MnO studied by angle-resolved and resonant photoemission. Physical Review B, 1988, 38, 10860-10869.	3.2	86
41	Initial oxidation and sulfidation of a Ni60Fe40(100) alloy surface. Surface Science, 1987, 179, 467-482.	1.9	22
42	Breakup of oxide films on a Ni-Fe(100) surface by S2 impingement. Applied Surface Science, 1986, 27, 318-328.	6.1	6
43	(ArO)+and (ArO2)+ions in rf sputter deposition discharges. Journal of Applied Physics, 1986, 60, 837-839.	2.5	8
44	Phase diagrams for adsorbed layers at crystal surfaces. Bulletin of Alloy Phase Diagrams, 1984, 5, 117-127.	0.2	3
45	Postdeposition annealing behavior of rf sputtered ZnO films. Journal of Vacuum Science and Technology, 1980, 17, 808-811.	1.9	58
46	The effect of rf power on reactively sputtered zinc oxide. Journal of Applied Physics, 1980, 51, 6405-6410.	2.5	36
47	Age hardening of a martensitic stainless steel with niobium and copper additions. Scripta Metallurgica, 1979, 13, 771-775.	1.2	1