Yufan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10235127/publications.pdf

Version: 2024-02-01

1040056 1372567 10 420 9 10 citations h-index g-index papers 10 10 10 368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	pH Dependence of Hydroxyl Radical, Ferryl, and/or Ferric Peroxo Species Generation in the Heterogeneous Fenton Process. Environmental Science & Environmental Science & 2022, 56, 1278-1288.	10.0	50
2	Comparative Experimental and Computational Studies of Hydroxyl and Sulfate Radical-Mediated Degradation of Simple and Complex Organic Substrates. Environmental Science & Envi	10.0	18
3	Heterogeneous Fenton Chemistry Revisited: Mechanistic Insights from Ferrihydrite-Mediated Oxidation of Formate and Oxalate. Environmental Science & Environmental Science & 2021, 55, 14414-14425.	10.0	77
4	Key Considerations When Assessing Novel Fenton Catalysts: Iron Oxychloride (FeOCl) as a Case Study. Environmental Science & En	10.0	37
5	Cu(II)-enhanced activation of molecular oxygen using Fe(II): Factors affecting the yield of oxidants. Chemosphere, 2019, 221, 383-391.	8.2	8
6	Oxidation of acetaminophen by Green rust coupled with Cu(II) via dioxygen activation: The role of various interlayer anions (CO32â^', SO42â^', Clâ^'). Chemical Engineering Journal, 2018, 350, 930-938.	12.7	16
7	Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite. Chemosphere, 2017, 188, 557-566.	8.2	95
8	Mineral transformation of structural Fe(II) hydroxides with O 2 , Cu(II), Cr(VI) and NO $2~\hat{a}^2$ for enhanced arsenite sequestration. Chemical Engineering Journal, 2017, 311, 247-254.	12.7	9
9	Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition. Chemical Engineering Journal, 2016, 294, 49-57.	12.7	71
10	Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions. Separation and Purification Technology, 2015, 154, 60-67.	7.9	39