
## E Paul Zehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10233525/publications.pdf Version: 2024-02-01



F DAILI 7FHD

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Considerations for use of the Hoffmann reflex in exercise studies. European Journal of Applied Physiology, 2002, 86, 455-468.                                                                                   | 2.5 | 476       |
| 2  | Regulation of Arm and Leg Movement during Human Locomotion. Neuroscientist, 2004, 10, 347-361.                                                                                                                  | 3.5 | 350       |
| 3  | Effect of Rhythmic Arm Movement on Reflexes in the Legs: Modulation of Soleus H-Reflexes and Somatosensory Conditioning. Journal of Neurophysiology, 2004, 91, 1516-1523.                                       | 1.8 | 127       |
| 4  | High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Experimental Brain Research, 2013, 225, 93-104.                                           | 1.5 | 122       |
| 5  | Coordinated Interlimb Compensatory Responses to Electrical Stimulation of Cutaneous Nerves in the<br>Hand and Foot During Walking. Journal of Neurophysiology, 2003, 90, 2850-2861.                             | 1.8 | 120       |
| 6  | Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks.<br>Journal of Physiology, 2007, 582, 209-227.                                                                     | 2.9 | 114       |
| 7  | Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect. Journal of Applied Physiology, 2006, 100, 83-90.                                           | 2.5 | 112       |
| 8  | Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar<br>control mechanisms for rhythmic human arm and leg movements. Experimental Brain Research, 2003,<br>149, 260-266. | 1.5 | 111       |
| 9  | Possible contributions of CPG activity to the control of rhythmic human arm movement. Canadian<br>Journal of Physiology and Pharmacology, 2004, 82, 556-568.                                                    | 1.4 | 109       |
| 10 | Neural Coupling Between the Arms and Legs During Rhythmic Locomotor-Like Cycling Movement.<br>Journal of Neurophysiology, 2007, 97, 1809-1818.                                                                  | 1.8 | 105       |
| 11 | The Quadrupedal Nature of Human Bipedal Locomotion. Exercise and Sport Sciences Reviews, 2009, 37, 102-108.                                                                                                     | 3.0 | 98        |
| 12 | Neural control of rhythmic human movement: the common core hypothesis. Exercise and Sport<br>Sciences Reviews, 2005, 33, 54-60.                                                                                 | 3.0 | 98        |
| 13 | A sigmoid function is the best fit for the ascending limb of the Hoffmann reflex recruitment curve.<br>Experimental Brain Research, 2008, 186, 93-105.                                                          | 1.5 | 94        |
| 14 | Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Experimental Brain Research, 2016, 234, 3059-3081.                      | 1.5 | 83        |
| 15 | Absence of nerve specificity in human cutaneous reflexes during standing. Experimental Brain<br>Research, 2000, 133, 267-272.                                                                                   | 1.5 | 80        |
| 16 | Bilateral neuromuscular plasticity from unilateral training of the ankle dorsiflexors. Experimental<br>Brain Research, 2011, 208, 217-227.                                                                      | 1.5 | 75        |
| 17 | Neural Control of Rhythmic Human Arm Movement: Phase Dependence and Task Modulation of<br>Hoffmann Reflexes in Forearm Muscles. Journal of Neurophysiology, 2003, 89, 12-21.                                    | 1.8 | 72        |
| 18 | Modulation of human cutaneous reflexes during rhythmic cyclical arm movement. Experimental Brain<br>Research, 2000, 135, 241-250.                                                                               | 1.5 | 71        |

E Paul Zehr

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Training-induced adaptive plasticity in human somatosensory reflex pathways. Journal of Applied<br>Physiology, 2006, 101, 1783-1794.                                                                             | 2.5 | 71        |
| 20 | Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior.<br>Muscle and Nerve, 2007, 35, 756-766.                                                                          | 2.2 | 69        |
| 21 | Restoring Symmetry. Exercise and Sport Sciences Reviews, 2014, 42, 70-75.                                                                                                                                        | 3.0 | 67        |
| 22 | Cutaneous stimulation of discrete regions of the sole during locomotion produces "sensory steering―of the foot. BMC Sports Science, Medicine and Rehabilitation, 2014, 6, 33.                                    | 1.7 | 64        |
| 23 | Differential Regulation of Cutaneous and H-Reflexes During Leg Cycling in Humans. Journal of<br>Neurophysiology, 2001, 85, 1178-1184.                                                                            | 1.8 | 60        |
| 24 | Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke:<br>the arms can give legs a helping hand in rehabilitation. Journal of Neurophysiology, 2018, 119, 1095-1112. | 1.8 | 57        |
| 25 | Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking. Brain Research, 2005, 1062, 48-62.                                                                       | 2.2 | 55        |
| 26 | Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Neuroscience Letters, 2007, 419, 10-14.                                                                   | 2.1 | 54        |
| 27 | Task-specific modulation of cutaneous reflexes expressed at functionally relevant gait cycle phases<br>during level and incline walking and stair climbing. Experimental Brain Research, 2006, 173, 185-192.     | 1.5 | 53        |
| 28 | Persistence of locomotor-related interlimb reflex networks during walking after stroke. Clinical Neurophysiology, 2012, 123, 796-807.                                                                            | 1.5 | 51        |
| 29 | Corticospinal Excitability Is Lower During Rhythmic Arm Movement Than During Tonic Contraction.<br>Journal of Neurophysiology, 2006, 95, 914-921.                                                                | 1.8 | 50        |
| 30 | Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms.<br>Experimental Brain Research, 2018, 236, 2009-2021.                                                     | 1.5 | 48        |
| 31 | Diurnal changes in the amplitude of the Hoffmann reflex in the human soleus but not in the flexor<br>carpi radialis muscle. Experimental Brain Research, 2006, 170, 1-6.                                         | 1.5 | 47        |
| 32 | Rhythmic arm cycling suppresses hyperactive soleus H-reflex amplitude after stroke. Clinical<br>Neurophysiology, 2008, 119, 1443-1452.                                                                           | 1.5 | 47        |
| 33 | Rhythmic arm cycling produces a non-specific signal that suppresses Soleus H-reflex amplitude in stationary legs. Experimental Brain Research, 2007, 179, 199-208.                                               | 1.5 | 45        |
| 34 | Sherlock Holmes and the curious case of the human locomotor central pattern generator. Journal of Neurophysiology, 2018, 120, 53-77.                                                                             | 1.8 | 45        |
| 35 | Enhancement of Arm and Leg Locomotor Coupling With Augmented Cutaneous Feedback From the<br>Hand. Journal of Neurophysiology, 2007, 98, 1810-1814.                                                               | 1.8 | 44        |
| 36 | Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling.<br>Experimental Brain Research, 2009, 193, 297-306.                                                                   | 1.5 | 42        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not<br>suppressed by rhythmic arm movement. Experimental Brain Research, 2004, 159, 382-388.                                                                                                                                                                                                                                         | 1.5 | 41        |
| 38 | Neural control of rhythmic arm cycling after stroke. Journal of Neurophysiology, 2012, 108, 891-905.                                                                                                                                                                                                                                                                                                                                 | 1.8 | 40        |
| 39 | Earth-Referenced Handrail Contact Facilitates Interlimb Cutaneous Reflexes During Locomotion.<br>Journal of Neurophysiology, 2007, 98, 433-442.                                                                                                                                                                                                                                                                                      | 1.8 | 36        |
| 40 | Interlimb coupling from the arms to legs is differentially specified for populations of motor units<br>comprising the compound H-reflex during "reduced―human locomotion. Experimental Brain Research,<br>2011, 208, 157-168.                                                                                                                                                                                                        | 1.5 | 36        |
| 41 | Modulation of cutaneous reflexes in human upper limb muscles during arm cycling is independent of activity in the contralateral arm. Experimental Brain Research, 2005, 161, 133-144.                                                                                                                                                                                                                                                | 1.5 | 34        |
| 42 | Forward and Backward Arm Cycling Are Regulated by Equivalent Neural Mechanisms. Journal of<br>Neurophysiology, 2005, 93, 633-640.                                                                                                                                                                                                                                                                                                    | 1.8 | 32        |
| 43 | Context-Dependent Modulation of Interlimb Cutaneous Reflexes in Arm Muscles as a Function of<br>Stability Threat During Walking. Journal of Neurophysiology, 2006, 96, 3096-3103.                                                                                                                                                                                                                                                    | 1.8 | 32        |
| 44 | Evidence-based risk assessment and recommendations for physical activity clearance: stroke and spinal cord injury <sup>1</sup> This paper is one of a selection of papers published in this Special Issue, entitled Evidence-based risk assessment and recommendations for physical activity clearance, and has undergone the Journal's usual peer review process Applied Physiology, Nutrition and Metabolism, 2011, 36, S214-S231. | 1.9 | 32        |
| 45 | Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke. Neural Plasticity, 2016, 2016, 1-19.                                                                                                                                                                                                                                                                                     | 2.2 | 31        |
| 46 | We Are Upright-Walking Cats: Human Limbs as Sensory Antennae During Locomotion. Physiology, 2019,<br>34, 354-364.                                                                                                                                                                                                                                                                                                                    | 3.1 | 31        |
| 47 | Neural Mechanisms Influencing Interlimb Coordination during Locomotion in Humans: Presynaptic<br>Modulation of Forearm H-Reflexes during Leg Cycling. PLoS ONE, 2013, 8, e76313.                                                                                                                                                                                                                                                     | 2.5 | 28        |
| 48 | Training-Induced Neural Plasticity and Strength Are Amplified After Stroke. Exercise and Sport Sciences Reviews, 2019, 47, 223-229.                                                                                                                                                                                                                                                                                                  | 3.0 | 26        |
| 49 | Phase-dependent modulation of soleus H-reflex amplitude induced by rhythmic arm cycling.<br>Neuroscience Letters, 2010, 475, 7-11.                                                                                                                                                                                                                                                                                                   | 2.1 | 25        |
| 50 | Head Trauma Exposure in Mixed Martial Arts Varies According to Sex and Weight Class. Sports Health, 2019, 11, 280-285.                                                                                                                                                                                                                                                                                                               | 2.7 | 25        |
| 51 | Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after<br>Stroke. Brain Sciences, 2016, 6, 54.                                                                                                                                                                                                                                                                                      | 2.3 | 24        |
| 52 | Understanding concussion knowledge and behavior among mixed martial arts, boxing, kickboxing, and<br>Muay Thai athletes and coaches. Physician and Sportsmedicine, 2020, 48, 417-423.                                                                                                                                                                                                                                                | 2.1 | 24        |
| 53 | Neuromechanical considerations for incorporating rhythmic arm movement in the rehabilitation of walking. Chaos, 2009, 19, 026102.                                                                                                                                                                                                                                                                                                    | 2.5 | 22        |
| 54 | Rhythmic arm cycling modulates Hoffmann reflex excitability differentially in the ankle flexor and extensor muscles. Neuroscience Letters, 2009, 450, 235-238.                                                                                                                                                                                                                                                                       | 2.1 | 22        |

E Paul Zehr

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of a compression garment on sensory feedback transmission in the human upper limb. Journal of Neurophysiology, 2018, 120, 186-195.                                             | 1.8 | 22        |
| 56 | Effects of Leg Pedaling on Early Latency Cutaneous Reflexes in Upper Limb Muscles. Journal of<br>Neurophysiology, 2010, 104, 210-217.                                                  | 1.8 | 21        |
| 57 | Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion. BMC Neuroscience, 2013, 14, 28.                   | 1.9 | 21        |
| 58 | Avengers Assemble! Using pop-culture icons to communicate science. American Journal of Physiology -<br>Advances in Physiology Education, 2014, 38, 118-123.                            | 1.6 | 21        |
| 59 | Recumbent stepping has similar but simpler neural control compared to walking. Experimental Brain<br>Research, 2007, 178, 427-438.                                                     | 1.5 | 20        |
| 60 | Multi-frequency arm cycling reveals bilateral locomotor coupling to increase movement symmetry.<br>Experimental Brain Research, 2011, 211, 299-312.                                    | 1.5 | 20        |
| 61 | Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling. Journal of Neurophysiology, 2012, 108, 3049-3058.                            | 1.8 | 20        |
| 62 | Robotic-assisted stepping modulates monosynaptic reflexes in forearm muscles in the human. Journal of Neurophysiology, 2011, 106, 1679-1687.                                           | 1.8 | 19        |
| 63 | From Claude Bernard to the Batcave and beyond: using Batman as a hook for physiology education.<br>American Journal of Physiology - Advances in Physiology Education, 2011, 35, 1-4.   | 1.6 | 18        |
| 64 | Time course of interlimb strength transfer after unilateral handgrip training. Journal of Applied<br>Physiology, 2018, 125, 1594-1608.                                                 | 2.5 | 18        |
| 65 | Convergence in Reflex Pathways from Multiple Cutaneous Nerves Innervating the Foot Depends upon the Number of Rhythmically Active Limbs during Locomotion. PLoS ONE, 2014, 9, e104910. | 2.5 | 16        |
| 66 | Cutaneous reflexes during rhythmic arm cycling are insensitive to asymmetrical changes in crank<br>length. Experimental Brain Research, 2006, 168, 165-177.                            | 1.5 | 15        |
| 67 | Muscle activation and cutaneous reflex modulation during rhythmic and discrete arm tasks in orthopaedic shoulder instability. Experimental Brain Research, 2007, 179, 339-351.         | 1.5 | 15        |
| 68 | Short-Term Plasticity of Spinal Reflex Excitability Induced by Rhythmic Arm Movement. Journal of Neurophysiology, 2008, 99, 2000-2005.                                                 | 1.8 | 15        |
| 69 | Preservation of common rhythmic locomotor control despite weakened supraspinal regulation after stroke. Frontiers in Integrative Neuroscience, 2014, 8, 95.                            | 2.1 | 14        |
| 70 | Limits to Fast-Conducting Somatosensory Feedback in Movement Control. Exercise and Sport Sciences Reviews, 2006, 34, 22-28.                                                            | 3.0 | 13        |
| 71 | Rhythmic arm cycling differentially modulates stretch and H-reflex amplitudes in soleus muscle.<br>Experimental Brain Research, 2011, 214, 529-537.                                    | 1.5 | 13        |
| 72 | The Potential Transformation of Our Species by Neural Enhancement. Journal of Motor Behavior, 2015,<br>47, 73-78.                                                                      | 0.9 | 13        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.<br>Frontiers in Human Neuroscience, 2017, 11, 612.                                         | 2.0 | 12        |
| 74 | Cross-education of strength and skill: an old idea with applications in the aging nervous system. Yale<br>Journal of Biology and Medicine, 2016, 89, 81-6.                                     | 0.2 | 12        |
| 75 | Soleus H-Reflex Modulation During Stance Phase of Walking With Altered Arm Swing Patterns. Motor<br>Control, 2010, 14, 116-125.                                                                | 0.6 | 11        |
| 76 | The lingering effects of a busted myth — false time limits in stroke rehabilitation. Applied Physiology,<br>Nutrition and Metabolism, 2015, 40, 858-861.                                       | 1.9 | 11        |
| 77 | Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study. Experimental Brain Research, 2019, 237, 3207-3220. | 1.5 | 10        |
| 78 | Repeated and patterned stimulation of cutaneous reflex pathways amplifies spinal cord excitability.<br>Journal of Neurophysiology, 2020, 124, 342-351.                                         | 1.8 | 10        |
| 79 | Physical activity after stroke and spinal cord injury: evidence-based recommendations on clearance for physical activity and exercise. Canadian Family Physician, 2012, 58, 1236-9.            | 0.4 | 10        |
| 80 | Biomechanical outcomes and neural correlates of cutaneous reflexes evoked during rhythmic arm cycling. Journal of Biomechanics, 2011, 44, 802-809.                                             | 2.1 | 9         |
| 81 | A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles. Journal of Neurophysiology, 2016, 115, 2065-2075.                             | 1.8 | 9         |
| 82 | Context-Dependent Modulation of Cutaneous Reflex Amplitudes during Forward and Backward Leg<br>Cycling. Motor Control, 2009, 13, 368-386.                                                      | 0.6 | 8         |
| 83 | Regionally distinct cutaneous afferent populations contribute to reflex modulation evoked by stimulation of the tibial nerve during walking. Journal of Neurophysiology, 2016, 116, 183-190.   | 1.8 | 8         |
| 84 | Beyond the Bottom of the Foot. Medicine and Science in Sports and Exercise, 2017, 49, 2439-2450.                                                                                               | 0.4 | 8         |
| 85 | Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Experimental Brain Research, 2019, 237, 2319-2329.                               | 1.5 | 8         |
| 86 | Effects of chronic ankle instability on cutaneous reflex modulation during walking. Experimental<br>Brain Research, 2019, 237, 1959-1971.                                                      | 1.5 | 7         |
| 87 | The Effect of Tai Chi Chuan Training on Stereotypic Behavior of Children with Autism Spectrum<br>Disorder. Journal of Autism and Developmental Disorders, 2022, 52, 2180-2186.                 | 2.7 | 7         |
| 88 | Differential modulation of reciprocal inhibition in ankle muscles during rhythmic arm cycling.<br>Neuroscience Letters, 2013, 534, 269-273.                                                    | 2.1 | 6         |
| 89 | Future think: cautiously optimistic about brain augmentation using tissue engineering and machine interface. Frontiers in Systems Neuroscience, 2015, 9, 72.                                   | 2.5 | 6         |
| 90 | Short-Term Plasticity in a Monosynaptic Reflex Pathway to Forearm Muscles after Continuous<br>Robot-Assisted Passive Stepping. Frontiers in Human Neuroscience, 2016, 10, 368.                 | 2.0 | 6         |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Reliability of Multiple Baseline Measures for Locomotor Retraining after Stroke. Biosystems and<br>Biorobotics, 2014, , 479-486.                                                                                                | 0.3 | 6         |
| 92  | Reflex control of human locomotion: Existence, features and functions of common interneuronal<br>system induced by multiple sensory inputs in humans. The Journal of Physical Fitness and Sports<br>Medicine, 2015, 4, 197-211. | 0.3 | 5         |
| 93  | Bilateral Reflex Fluctuations during Rhythmic Movement of Remote Limb Pairs. Frontiers in Human<br>Neuroscience, 2017, 11, 355.                                                                                                 | 2.0 | 5         |
| 94  | Sensory enhancement amplifies interlimb cutaneous reflexes in wrist extensor muscles. Journal of Neurophysiology, 2019, 122, 2085-2094.                                                                                         | 1.8 | 5         |
| 95  | Harnessing the Power of a Novel Program for Dynamic Balance Perturbation with Supported Body<br>Weight. Journal of Motor Behavior, 2020, 52, 643-655.                                                                           | 0.9 | 5         |
| 96  | Plantarflexion force is amplified with sensory stimulation during ramping submaximal isometric contractions. Journal of Neurophysiology, 2020, 123, 1427-1438.                                                                  | 1.8 | 5         |
| 97  | Exposure to impacts across a competitive rugby season impairs balance and neuromuscular function in female rugby athletes. BMJ Open Sport and Exercise Medicine, 2020, 6, e000740.                                              | 2.9 | 5         |
| 98  | Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors.<br>Physiological Reports, 2020, 8, e14406.                                                                                   | 1.7 | 5         |
| 99  | With Great Power Comes Great Responsibility—A Personal Philosophy for Communicating Science in Society. ENeuro, 2016, 3, ENEURO.0200-16.2016.                                                                                   | 1.9 | 5         |
| 100 | Five weeks of Yuishinkai karate training improves balance and neuromuscular function in older adults: a preliminary study. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, 65.                                       | 1.7 | 5         |
| 101 | Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing. Experimental Brain Research, 2016, 234, 2293-2304.                             | 1.5 | 4         |
| 102 | Modulation of cutaneous reflexes during sidestepping in adult humans. Experimental Brain Research, 2020, 238, 2229-2243.                                                                                                        | 1.5 | 4         |
| 103 | What lies beneath the brain: Neural circuits involved in human locomotion. , 2020, , 385-418.                                                                                                                                   |     | 4         |
| 104 | Changing coupling between the arms and legs with slow walking speeds alters regulation of somatosensory feedback. Experimental Brain Research, 2020, 238, 1335-1349.                                                            | 1.5 | 4         |
| 105 | 1894 revisited: Cross-education of skilled muscular control in women and the importance of representation. PLoS ONE, 2022, 17, e0264686.                                                                                        | 2.5 | 4         |
| 106 | Modulation of the Hoffmann reflex in the tibialis anterior with a change in posture. Physiological Reports, 2019, 7, e14179.                                                                                                    | 1.7 | 3         |
| 107 | Fight, flight or finished: forced fitness behaviours in Game of Thrones. British Journal of Sports<br>Medicine, 2019, 53, 576-580.                                                                                              | 6.7 | 3         |
| 108 | Sensory enhancement of warm-up amplifies subsequent grip strength and cycling performance.<br>European Journal of Applied Physiology, 2022, 122, 1695-1707.                                                                     | 2.5 | 3         |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Can concussion constrain the Caped Crusader?. British Journal of Sports Medicine, 2016, 50, 1481-1484.                                                                                                                | 6.7 | 2         |
| 110 | Effects of wrist position on reciprocal inhibition and cutaneous reflex amplitudes in forearm muscles. Neuroscience Letters, 2018, 677, 37-43.                                                                        | 2.1 | 2         |
| 111 | Long-lasting changes in muscle activation and step cycle variables induced by repetitive sensory<br>stimulation to discrete areas of the foot sole during walking. Journal of Neurophysiology, 2021, 125,<br>331-343. | 1.8 | 2         |
| 112 | Compression socks enhance sensory feedback to improve standing balance reactions and reflex control of walking. BMC Sports Science, Medicine and Rehabilitation, 2021, 13, 61.                                        | 1.7 | 2         |
| 113 | It's a no brainer: combat sports should be ground zero for research on concussion. British Journal of Sports Medicine, 2021, 55, 1434-1435.                                                                           | 6.7 | 2         |
| 114 | Prior experience does not alter modulation of cutaneous reflexes during manual wheeling and symmetrical arm cycling. Journal of Neurophysiology, 2013, 109, 2345-2353.                                                | 1.8 | 1         |
| 115 | Use of the wii balance board to assess changes in postural balance across athletic season. British<br>Journal of Sports Medicine, 2017, 51, A1.2-A1.                                                                  | 6.7 | 1         |
| 116 | Enhanced somatosensory feedback modulates cutaneous reflexes in arm muscles during self-triggered or prolonged stimulation. Experimental Brain Research, 2020, 238, 295-304.                                          | 1.5 | 1         |
| 117 | Scientific Insight that Will Guide Future Study of Visual Regulation of Human Locomotion - A<br>Testament to the Contribution of Dr. Aftab Patla. Exercise and Sport Sciences Reviews, 2008, 36,<br>107-108.          | 3.0 | 0         |
| 118 | Neuromechanical Interlimb Interactions and Rehabilitation of Walking after Stroke. Biosystems and Biorobotics, 2014, , 219-225.                                                                                       | 0.3 | 0         |
| 119 | Effects of chronic exposure to head impacts on the balance function of combat sports athletes.<br>Translational Sports Medicine, 2021, 4, 798.                                                                        | 1.1 | Ο         |
| 120 | How the Arms Help the Legs Get Better at Walking After Stroke. Frontiers for Young Minds, 0, 7, .                                                                                                                     | 0.8 | 0         |