Norbert Mücke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10231108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular and Biophysical Characterization of Assembly-Starter Units of Human Vimentin. Journal of Molecular Biology, 2004, 340, 97-114.	4.2	148
2	The structural basis of nanobody unfolding reversibility and thermoresistance. Scientific Reports, 2018, 8, 7934.	3.3	106
3	A Quantitative Kinetic Model for the in Vitro Assembly of Intermediate Filaments from Tetrameric Vimentin. Journal of Biological Chemistry, 2007, 282, 18563-18572.	3.4	84
4	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	2.5	71
5	Vimentin Intermediate Filament Formation: In Vitro Measurement and Mathematical Modeling of the Filament Length Distribution during Assembly. Langmuir, 2009, 25, 8817-8823.	3.5	51
6	Attractive Interactions among Intermediate Filaments Determine Network Mechanics In Vitro. PLoS ONE, 2014, 9, e93194.	2.5	51
7	Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. European Journal of Cell Biology, 2006, 85, 1-10.	3.6	50
8	Complex formation and kinetics of filament assembly exhibited by the simple epithelial keratins K8 and K18. Journal of Structural Biology, 2012, 177, 54-62.	2.8	49
9	EGFP oligomers as natural fluorescence and hydrodynamic standards. Scientific Reports, 2016, 6, 33022.	3.3	46
10	Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophysical Journal, 2018, 114, 2408-2418.	0.5	29
11	Vimentin Sâ€glutathionylation at Cys328 inhibits filament elongation and induces severing of mature filaments <i>inÂvitro</i> . FEBS Journal, 2020, 287, 5304-5322.	4.7	24
12	Threonine 150 Phosphorylation of Keratin 5 Is Linked to Epidermolysis Bullosa Simplex and Regulates Filament Assembly and Cell Viability. Journal of Investigative Dermatology, 2018, 138, 627-636.	0.7	23
13	Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition. PLoS ONE, 2009, 4, e7756.	2.5	23
14	Effects of charge-modifying mutations in histone H2A α3-domain on nucleosome stability assessed by single-pair FRET and MD simulations. Scientific Reports, 2017, 7, 13303.	3.3	18
15	Defining the epichromatin epitope. Nucleus, 2017, 8, 625-640.	2.2	15
16	In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study. PLoS ONE, 2016, 11, e0157451.	2.5	14
17	Intermolecular base stacking mediates RNA-RNA interaction in a crystal structure of the RNA chaperone Hfq. Scientific Reports, 2017, 7, 9903.	3.3	14
18	Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen–deuterium exchange. Journal of Structural Biology, 2015, 192, 426-440.	2.8	13

#	Article	IF	CITATIONS
19	Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation. Protein Engineering, Design and Selection, 2019, 32, 241-249.	2.1	6
20	A general mathematical model for the inÂvitro assembly dynamics of intermediate filament proteins. Biophysical Journal, 2022, 121, 1094-1104.	0.5	5