
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1022321/publications.pdf Version: 2024-02-01

FUSA CIANNONI

#	Article	IF	CITATIONS
1	Lactate Rewires Lipid Metabolism and Sustains a Metabolic–Epigenetic Axis in Prostate Cancer. Cancer Research, 2022, 82, 1267-1282.	0.9	52
2	Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells, 2021, 10, 3396.	4.1	12
3	Stromal-induced mitochondrial re-education: Impact on epithelial-to-mesenchymal transition and cancer aggressiveness. Seminars in Cell and Developmental Biology, 2020, 98, 71-79.	5.0	7
4	Mitochondrial Redox Hubs as Promising Targets for Anticancer Therapy. Frontiers in Oncology, 2020, 10, 256.	2.8	39
5	Treatment with Cannabinoids as a Promising Approach for Impairing Fibroblast Activation and Prostate Cancer Progression. International Journal of Molecular Sciences, 2020, 21, 787.	4.1	21
6	Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene, 2019, 38, 5339-5355.	5.9	163
7	Lactate: A Metabolic Driver in the Tumour Landscape. Trends in Biochemical Sciences, 2019, 44, 153-166.	7.5	263
8	Stromalâ€induced downregulation of miRâ€1247 promotes prostate cancer malignancy. Journal of Cellular Physiology, 2019, 234, 8274-8285.	4.1	21
9	Zoledronic Acid Inhibits the RhoA-mediated Amoeboid Motility of Prostate Cancer Cells. Current Cancer Drug Targets, 2019, 19, 807-816.	1.6	5
10	Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies. Cell Metabolism, 2018, 28, 848-865.e6.	16.2	184
11	Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Frontiers in Oncology, 2017, 7, 40.	2.8	101
12	Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget, 2017, 8, 118-132.	1.8	52
13	Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget, 2016, 7, 61890-61904.	1.8	103
14	Nutrient Exploitation within the Tumor–Stroma Metabolic Crosstalk. Trends in Cancer, 2016, 2, 736-746.	7.4	41
15	Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. Cell Cycle, 2016, 15, 1908-1918.	2.6	49
16	miR-155 Drives Metabolic Reprogramming of ER+ Breast Cancer Cells Following Long-Term Estrogen Deprivation and Predicts Clinical Response to Aromatase Inhibitors. Cancer Research, 2016, 76, 1615-1626.	0.9	82
17	Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits. Oncotarget, 2016, 7, 51138-51149.	1.8	21
18	Reactive Oxygen Species in Stem Cells. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-2.	4.0	28

#	Article	IF	CITATIONS
19	Role of microenvironment on neuroblastoma SK-N-AS SDHB-silenced cell metabolism and function. Endocrine-Related Cancer, 2015, 22, 409-417.	3.1	23
20	Principles of Redox Signaling. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 3-40.	0.4	0
21	Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression. Oncotarget, 2015, 6, 4615-4632.	1.8	82
22	Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs OXPHOS and prostate cancer metastatic spread. Oncotarget, 2015, 6, 24061-24074.	1.8	84
23	Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. Oncotarget, 2015, 6, 31441-31460.	1.8	55
24	5-Fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget, 2015, 6, 41706-41721.	1.8	103
25	miR-205 Hinders the Malignant Interplay Between Prostate Cancer Cells and Associated Fibroblasts. Antioxidants and Redox Signaling, 2014, 20, 1045-1059.	5.4	63
26	Redox Circuitries Driving Src Regulation. Antioxidants and Redox Signaling, 2014, 20, 2011-2025.	5.4	52
27	Senescent stroma promotes prostate cancer progression: The role of miRâ€210. Molecular Oncology, 2014, 8, 1729-1746.	4.6	102
28	Succinate Dehydrogenase Subunit B Mutations Modify Human Neuroblastoma Cell Metabolism and Proliferation. Hormones and Cancer, 2014, 5, 174-184.	4.9	20
29	Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Communication and Signaling, 2014, 12, 24.	6.5	77
30	Microenvironment and tumor cell plasticity: An easy way out. Cancer Letters, 2013, 341, 80-96.	7.2	214
31	EphA2-mediated mesenchymal–amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts. Journal of Molecular Medicine, 2013, 91, 103-115.	3.9	37
32	Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor β–dependent mesenchymalâ€toâ€mesenchymal transition. Arthritis and Rheumatism, 2013, 65, 258-269.	6.7	46
33	Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3481-3498.	4.1	840
34	Chronic Resveratrol Treatment Ameliorates Cell Adhesion and Mitigates the Inflammatory Phenotype in Senescent Human Fibroblasts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 371-381.	3.6	48
35	Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle, 2013, 12, 1791-1801.	2.6	136
36	22Â:Â6 <i>n</i> -3 DHA inhibits differentiation of prostate fibroblasts into myofibroblasts and tumorigenesis. British Journal of Nutrition, 2012, 108, 2129-2137.	2.3	23

#	Article	IF	CITATIONS
37	Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness. Journal of Signal Transduction, 2012, 2012, 1-10.	2.0	48
38	Reciprocal Metabolic Reprogramming through Lactate Shuttle Coordinately Influences Tumor-Stroma Interplay. Cancer Research, 2012, 72, 5130-5140.	0.9	438
39	Stromal fibroblasts synergize with hypoxic oxidative stress to enhance melanoma aggressiveness. Cancer Letters, 2012, 324, 31-41.	7.2	46
40	EMT and Oxidative Stress: A Bidirectional Interplay Affecting Tumor Malignancy. Antioxidants and Redox Signaling, 2012, 16, 1248-1263.	5.4	185
41	Time-Dependent Stabilization of Hypoxia Inducible Factor-1α by Different Intracellular Sources of Reactive Oxygen Species. PLoS ONE, 2012, 7, e38388.	2.5	77
42	Globular Adiponectin Activates Motility and Regenerative Traits of Muscle Satellite Cells. PLoS ONE, 2012, 7, e34782.	2.5	29
43	Cancer Associated Fibroblasts Exploit Reactive Oxygen Species Through a Proinflammatory Signature Leading to Epithelial Mesenchymal Transition and Stemness. Antioxidants and Redox Signaling, 2011, 14, 2361-2371.	5.4	186
44	HIF-1Î \pm stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radical Biology and Medicine, 2011, 51, 893-904.	2.9	146
45	EphA2 Induces Metastatic Growth Regulating Amoeboid Motility and Clonogenic Potential in Prostate Carcinoma Cells. Molecular Cancer Research, 2011, 9, 149-160.	3.4	63
46	Src redox regulation: Again in the front line. Free Radical Biology and Medicine, 2010, 49, 516-527.	2.9	101
47	Globular Adiponectin as a Complete Mesoangioblast Regulator: Role in Proliferation, Survival, Motility, and Skeletal Muscle Differentiation. Molecular Biology of the Cell, 2010, 21, 848-859.	2.1	28
48	Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness. Cancer Research, 2010, 70, 6945-6956.	0.9	493
49	Redox-Based Escape Mechanism from Death: The Cancer Lesson. Antioxidants and Redox Signaling, 2009, 11, 2791-2806.	5.4	81
50	Kinase-Dependent and -Independent Roles of EphA2 in the Regulation of Prostate Cancer Invasion and Metastasis. American Journal of Pathology, 2009, 174, 1492-1503.	3.8	96
51	Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology, 2008, 76, 1352-1364.	4.4	435
52	Redox Regulation of Ephrin/Integrin Cross-Talk. Cell Adhesion and Migration, 2007, 1, 33-42.	2.7	24
53	EphrinA1 Activates a Src/Focal Adhesion Kinase-mediated Motility Response Leading to Rho-dependent Actino/Myosin Contractility. Journal of Biological Chemistry, 2007, 282, 19619-19628.	3.4	78
54	Sphingosine 1-phosphate stimulation of NADPH oxidase activity: Relationship with platelet-derived growth factor receptor and c-Src kinase. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 872-883.	2.4	21

#	Article	IF	CITATIONS
55	Redox Regulation of Ephrin/Integrin Cross-Talk. Cell Adhesion and Migration, 2007, 1, 33-42.	2.7	12
56	Redox regulation of ephrin/integrin cross-talk. Cell Adhesion and Migration, 2007, 1, 33-42.	2.7	11
57	A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation. Biochemical and Biophysical Research Communications, 2006, 348, 367-373.	2.1	20
58	Redox regulation of platelet-derived-growth-factor-receptor: Role of NADPH-oxidase and c-Src tyrosine kinase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 166-175.	4.1	55
59	Intracellular Reactive Oxygen Species Activate Src Tyrosine Kinase during Cell Adhesion and Anchorage-Dependent Cell Growth. Molecular and Cellular Biology, 2005, 25, 6391-6403.	2.3	405
60	EphrinA1 Repulsive Response Is Regulated by an EphA2 Tyrosine Phosphatase. Journal of Biological Chemistry, 2005, 280, 34008-34018.	3.4	65
61	Anchorage-Dependent Cell Growth: Tyrosine Kinases and Phosphatases Meet Redox Regulation. Antioxidants and Redox Signaling, 2005, 7, 578-592.	5.4	19
62	Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7258-7263.	7.1	241
63	LMW-PTP is a positive regulator of tumor onset and growth. Oncogene, 2004, 23, 3905-3914.	5.9	98
64	Involvement of the Tyrosine Phosphorylation on CSH Transport in NIH3T3 Fibroblasts. IUBMB Life, 2003, 55, 159-165.	3.4	4
65	Reactive oxygen species as essential mediators of cell adhesion. Journal of Cell Biology, 2003, 161, 933-944.	5.2	406
66	Lymphocyte Function-associated Antigen-1-mediated T Cell Adhesion Is Impaired by Low Molecular Weight Phosphotyrosine Phosphatase-dependent Inhibition of FAK Activity. Journal of Biological Chemistry, 2003, 278, 36763-36776.	3.4	30
67	A Nucleophilic Catalysis Step is Involved in the Hydrolysis of Aryl Phosphate Monoesters by Human CT Acylphosphatase. Journal of Biological Chemistry, 2003, 278, 194-199.	3.4	5
68	Insight into the Role of Low Molecular Weight Phosphotyrosine Phosphatase (LMW-PTP) on Platelet-derived Growth Factor Receptor (PDGF-r) Signaling. Journal of Biological Chemistry, 2002, 277, 37331-37338.	3.4	39
69	Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002, 416, 507-511.	27.8	2,322
70	New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases. Journal of Cell Science, 2002, 115, 2219-2232.	2.0	39
71	New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases. Journal of Cell Science, 2002, 115, 2219-32.	2.0	33
72	Hydrogen Peroxide Triggers the Formation of a Disulfide Dimer of Muscle Acylphosphatase and Modifies Some Functional Properties of the Enzyme. Journal of Biological Chemistry, 2001, 276, 41862-41869.	3.4	12

#	Article	IF	CITATIONS
73	Low Molecular Weight Protein-tyrosine Phosphatase Is Involved in Growth Inhibition during Cell Differentiation. Journal of Biological Chemistry, 2001, 276, 49156-49163.	3.4	36
74	Two Vicinal Cysteines Confer a Peculiar Redox Regulation to Low Molecular Weight Protein Tyrosine Phosphatase in Response to Platelet-derived Growth Factor Receptor Stimulation. Journal of Biological Chemistry, 2001, 276, 33478-33487.	3.4	166
75	Acylphosphatase possesses nucleoside triphosphatase and nucleoside diphosphatase activities. Biochemical Journal, 2000, 349, 43.	3.7	10
76	Acylphosphatase possesses nucleoside triphosphatase and nucleoside diphosphatase activities. Biochemical Journal, 2000, 349, 43-49.	3.7	12
77	The Low M r Protein-tyrosine Phosphatase Is Involved in Rho-mediated Cytoskeleton Rearrangement after Integrin and Platelet-derived Growth Factor Stimulation. Journal of Biological Chemistry, 2000, 275, 4640-4646.	3.4	80
78	Development of Enzymatic Activity during Protein Folding. Journal of Biological Chemistry, 1999, 274, 20151-20158.	3.4	26
79	Nutritional and metabolic signalling through <scp>GPCRs</scp> . FEBS Letters, 0, , .	2.8	1