Claude Knauf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxidants and Redox Signaling, 2022, 37, 394-415.	5.4	18
2	High Hydrostatic Pressure Processing of Human Milk Increases Apelin and GLP-1 Contents to Modulate Gut Contraction and Glucose Metabolism in Mice Compared to Holder Pasteurization. Nutrients, 2022, 14, 219.	4.1	2
3	Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites, 2022, 12, 301.	2.9	7
4	5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sciences, 2022, 298, 120494.	4.3	2
5	In Vivo Assessment of Antioxidant Potential of Human Milk Treated by Holder Pasteurization or High Hydrostatic Pressure Processing: A Preliminary Study on Intestinal and Hepatic Markers in Adult Mice. Antioxidants, 2022, 11, 1091.	5.1	3
6	Glucose Stimulates Gut Motility in Fasted and Fed Conditions: Potential Involvement of a Nitric Oxide Pathway. Nutrients, 2022, 14, 2176.	4.1	3
7	Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice. Gut, 2021, 70, 1078-1087.	12.1	28
8	Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut, 2021, 70, 1088-1097.	12.1	105
9	Endothelin-1 Exhibiting Pro-Nociceptive and Pro-Peristaltic Activities Is Increased in Peritoneal Carcinomatosis. Frontiers in Pain Research, 2021, 2, 613187.	2.0	1
10	Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology, 2021, 248, R67-R82.	2.6	85
11	A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metabolism, 2021, 33, 1073-1075.	16.2	39
12	Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 2021, 197, 108721.	4.1	27
13	Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes―as Therapeutic Gut Factors. Neuroendocrinology, 2020, 110, 139-146.	2.5	30
14	The Gut Microbiome Influences Host Endocrine Functions. Endocrine Reviews, 2019, 40, 1271-1284.	20.1	179
15	Pharmacological inhibition of the F ₁ â€ATPase/P2Y ₁ pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiologica, 2019, 226, e13268.	3.8	12
16	Elabela and Apelin actions in healthy and pathological pregnancies. Cytokine and Growth Factor Reviews, 2019, 46, 45-53.	7.2	37
17	Central Effects of Beta-Blockers May Be Due to Nitric Oxide and Hydrogen Peroxide Release Independently of Their Ability to Cross the Blood-Brain Barrier. Frontiers in Neuroscience, 2019, 13, 33.	2.8	24
18	Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing. Molecular Metabolism, 2019, 20, 166-177.	6.5	11

CLAUDE KNAUF

#	Article	IF	CITATIONS
19	Bisphenol S exposure affects gene expression related to intestinal glucose absorption and glucose metabolism in mice. Environmental Science and Pollution Research, 2019, 26, 3636-3642.	5.3	22
20	Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity, 2018, 26, 792-800.	3.0	141
21	Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons. Molecular Metabolism, 2018, 10, 100-108.	6.5	46
22	Axe intestin-cerveau et contrÃ1e du métabolisme glucidique. Cahiers De Nutrition Et De Dietetique, 2018, 53, 53-61.	0.3	0
23	Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System. Frontiers in Neuroscience, 2018, 12, 725.	2.8	39
24	Effects of Bisphenol S on hypothalamic neuropeptides regulating feeding behavior and apelin/APJ system in mice. Ecotoxicology and Environmental Safety, 2018, 161, 459-466.	6.0	37
25	Impact of Intestinal Peptides on the Enteric Nervous System: Novel Approaches to Control Glucose Metabolism and Food Intake. Frontiers in Endocrinology, 2018, 9, 328.	3.5	35
26	Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 2017, 66, 258-269.	12.1	73
27	Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Molecular Systems Biology, 2017, 13, 921.	7.2	43
28	Hepatocyte Nuclear Factor-1Î ² Controls Mitochondrial Respiration in Renal Tubular Cells. Journal of the American Society of Nephrology: JASN, 2017, 28, 3205-3217.	6.1	43
29	Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nature Communications, 2017, 8, 1314.	12.8	86
30	Glucosensing in the gastrointestinal tract: Impact on glucose metabolism. American Journal of Physiology - Renal Physiology, 2016, 310, G645-G658.	3.4	40
31	Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Scientific Reports, 2016, 6, 31849.	3.3	16
32	How gut microbes talk to organs: The role of endocrine and nervous routes. Molecular Metabolism, 2016, 5, 743-752.	6.5	237
33	Apelin Controls Fetal and Neonatal Glucose Homeostasis and Is Altered by Maternal Undernutrition. Diabetes, 2016, 65, 554-560.	0.6	33
34	Apelin regulates FoxO3 translocation to mediate cardioprotective responses to myocardial injury and obesity. Scientific Reports, 2015, 5, 16104.	3.3	36
35	Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Frontiers in Neuroscience, 2015, 9, 56.	2.8	69
36	Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes. Antioxidants and Redox Signaling, 2014, 20, 557-573.	5.4	44

CLAUDE KNAUF

#	Article	IF	CITATIONS
37	The apelinergic system: Sexual dimorphism and tissue-specific modulations by obesity and insulin resistance in female mice. Peptides, 2013, 46, 94-101.	2.4	21
38	Apelin stimulates both cholecystokinin and glucagon-like peptide 1 secretions in vitro and in vivo in rodents. Peptides, 2013, 48, 134-136.	2.4	27
39	Apelin Metabolic Functions. , 2013, , 201-211.		0
40	p53-PGC-1α Pathway Mediates Oxidative Mitochondrial Damage and Cardiomyocyte Necrosis Induced by Monoamine Oxidase-A Upregulation: Role in Chronic Left Ventricular Dysfunction in Mice. Antioxidants and Redox Signaling, 2013, 18, 5-18.	5.4	117
41	Hedgehog Partial Agonism Drives Warburg-like Metabolism in Muscle and Brown Fat. Cell, 2012, 151, 414-426.	28.9	237
42	Maternal hypertension induces tissue-specific modulations of the apelinergic system in the fetoplacental unit in rat. Peptides, 2012, 35, 136-138.	2.4	6
43	Apelin, a promising target for type 2 diabetes treatment?. Trends in Endocrinology and Metabolism, 2012, 23, 234-241.	7.1	132
44	Jejunum Inflammation in Obese and Diabetic Mice Impairs Enteric Glucose Detection and Modifies Nitric Oxide Release in the Hypothalamus. Antioxidants and Redox Signaling, 2011, 14, 415-423.	5.4	39
45	Apelin, diabetes, and obesity. Endocrine, 2011, 40, 1-9.	2.3	240
46	Deletion of <i>Lkb1</i> in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice. Diabetes, 2011, 60, 735-745.	0.6	48
47	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	3.5	267
48	Central Apelin Controls Glucose Homeostasis <i>via</i> a Nitric Oxide-Dependent Pathway in Mice. Antioxidants and Redox Signaling, 2011, 15, 1477-1496.	5.4	66
49	Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic α-MSH release. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E955-E966.	3.5	63
50	Ventromedial Hypothalamic Nitric Oxide Production Is Necessary for Hypoglycemia Detection and Counterregulation. Diabetes, 2010, 59, 519-528.	0.6	95
51	Drosophila Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate. Cell, 2010, 140, 148-160.	28.9	336
52	Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis. PLoS ONE, 2009, 4, e5844.	2.5	189
53	Brain Glucagon-Like Peptide 1 Signaling Controls the Onset of High-Fat Diet-Induced Insulin Resistance and Reduces Energy Expenditure. Endocrinology, 2008, 149, 4768-4777.	2.8	89
54	Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing. Diabetes, 2008, 57, 2603-2612.	0.6	116

CLAUDE KNAUF

#	Article	IF	CITATIONS
55	Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes, 2008, 57, 1470-1481.	0.6	3,897
56	Apelin Stimulates Glucose Utilization in Normal and Obese Insulin-Resistant Mice. Cell Metabolism, 2008, 8, 437-445.	16.2	417
57	Prebiotics and Modulation of Gastrointestinal Peptides. , 2008, , 247-262.		0
58	Central Insulin Regulates Heart Rate and Arterial Blood Flow. Diabetes, 2007, 56, 2872-2877.	0.6	44
59	Glucagon-Like Peptide-1 and Energy Homeostasis3. Journal of Nutrition, 2007, 137, 2534S-2538S.	2.9	47
60	Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 2007, 56, 1761-1772.	0.6	4,964
61	Targeted Deletion of AIF Decreases Mitochondrial Oxidative Phosphorylation and Protects from Obesity and Diabetes. Cell, 2007, 131, 476-491.	28.9	381
62	GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 2007, 276, 18-23.	3.2	86
63	Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sciences, 2006, 79, 1007-1013.	4.3	99
64	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	2.8	73
65	Improvement of Glucose Tolerance and Hepatic Insulin Sensitivity by Oligofructose Requires a Functional Glucagon-Like Peptide 1 Receptor. Diabetes, 2006, 55, 1484-1490.	0.6	365
66	Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. Journal of Clinical Investigation, 2005, 115, 3554-3563.	8.2	263
67	Intracerebroventricular Infusion of Glucose, Insulin, and the Adenosine Monophosphate-Activated Kinase Activator, 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside, Controls Muscle Glycogen Synthesis. Endocrinology, 2004, 145, 4025-4033.	2.8	75
68	Evidence for a Spontaneous Nitric Oxide Release from the Rat Median Eminence: Influence on Gonadotropin-Releasing Hormone Release*. Endocrinology, 2001, 142, 2343-2350.	2.8	47
69	Evidence for a Spontaneous Nitric Oxide Release from the Rat Median Eminence: Influence on Gonadotropin-Releasing Hormone Release. Endocrinology, 2001, 142, 2343-2350.	2.8	20