Maud Frieden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1021825/publications.pdf

Version: 2024-02-01

42 papers

2,675 citations

28 h-index 276875 41 g-index

46 all docs

46 docs citations

46 times ranked

3568 citing authors

#	Article	IF	CITATIONS
1	Activation and Migration of Human Skeletal Muscle Stem Cells In Vitro Differently Rely on Calcium Signals. Cells, 2022, 11, 1689.	4.1	O
2	The p.E152K-STIM1 mutation deregulates Ca2+ signaling contributing to chronic pancreatitis. Journal of Cell Science, 2021, 134, .	2.0	4
3	Nanopattern surface improves cultured human myotube maturation. Skeletal Muscle, 2021, 11, 12.	4.2	9
4	Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different?. Cells, 2021, 10, 2356.	4.1	7
5	S-acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca2+ signaling by Jurkat T cell receptors at the immune synapse. ELife, 2021, 10, .	6.0	23
6	STIM1 long and STIM1 gate differently TRPC1 during store-operated calcium entry. Cell Calcium, 2020, 86, 102134.	2.4	15
7	TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive Ca2+ release in human myotubes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 806-813.	4.1	41
8	Calumenin contributes to ER-Ca2+ homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention. Cell Calcium, 2017, 62, 47-59.	2.4	11
9	Neurological and Motor Disorders: TRPC in the Skeletal Muscle. Advances in Experimental Medicine and Biology, 2017, 993, 557-575.	1.6	12
10	Distinct roles of NFATc1 and NFATc4 in human primary myoblast differentiation and in reserve cell maintenance. Journal of Cell Science, 2017, 130, 3083-3093.	2.0	9
11	Isolation of Human Myoblasts, Assessment of Myogenic Differentiation, and Store-operated Calcium Entry Measurement. Journal of Visualized Experiments, 2017, , .	0.3	5
12	Airway Epithelial Cell Integrity Protects from Cytotoxicity of <i>Pseudomonas aeruginosa</i> Quorum-Sensing Signals. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 265-275.	2.9	36
13	STIM1L traps and gates Orai1 channels without remodeling the cortical ER. Journal of Cell Science, 2015, 128, 1568-79.	2.0	44
14	SERCA and PMCA pumps contribute to the deregulation of Ca2+ homeostasis in human CF epithelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 892-903.	4.1	21
15	Inositol 1,4,5 trisphosphate receptor 1 is a key player of human myoblast differentiation. Cell Calcium, $2014, 56, 513-521$.	2.4	28
16	Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells. Free Radical Biology and Medicine, 2014, 76, 173-184.	2.9	44
17	During post-natal human myogenesis, normal myotube size requires TRPC1 and TRPC4 mediated Ca2+ entry. Journal of Cell Science, 2013, 126, 2525-33.	2.0	44
18	mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12526-12534.	7.1	435

#	Article	IF	Citations
19	Activation of Transient Receptor Potential Canonical 3 (TRPC3)-mediated Ca2+ Entry by A1 Adenosine Receptor in Cardiomyocytes Disturbs Atrioventricular Conduction. Journal of Biological Chemistry, 2012, 287, 26688-26701.	3.4	28
20	Transient Receptor Potential Canonical Channels Are Required for in Vitro Endothelial Tube Formation. Journal of Biological Chemistry, 2012, 287, 5917-5927.	3.4	85
21	Remodelling of the endoplasmic reticulum during storeâ€operated calcium entry. Biology of the Cell, 2011, 103, 365-380.	2.0	58
22	Thapsigargin activates Ca2+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium, 2011, 49, 115-127.	2.4	60
23	Local Cytosolic Ca2+ Elevations Are Required for Stromal Interaction Molecule 1 (STIM1) De-oligomerization and Termination of Store-operated Ca2+ Entry. Journal of Biological Chemistry, 2011, 286, 36448-36459.	3.4	37
24	Electrophysiological characterization of store-operated and agonist-induced Ca2+ entry pathways in endothelial cells. Pflugers Archiv European Journal of Physiology, 2010, 460, 109-120.	2.8	16
25	SLP-2 negatively modulates mitochondrial sodium–calcium exchange. Cell Calcium, 2010, 47, 11-18.	2.4	35
26	Regulation of plasma membrane calcium fluxes by mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1383-1394.	1.0	107
27	Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells. Mitochondrion, 2009, 9, 232-241.	3.4	50
28	STIM1 Knockdown Reveals That Store-operated Ca2+ Channels Located Close to Sarco/Endoplasmic Ca2+ ATPases (SERCA) Pumps Silently Refill the Endoplasmic Reticulum. Journal of Biological Chemistry, 2007, 282, 11456-11464.	3.4	128
29	Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Archiv European Journal of Physiology, 2007, 455, 375-396.	2.8	127
30	Subplasmalemmal Mitochondria Modulate the Activity of Plasma Membrane Ca2+-ATPases. Journal of Biological Chemistry, 2005, 280, 43198-43208.	3.4	67
31	The Role of Mitochondria for Ca2+ Refilling of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2005, 280, 12114-12122.	3.4	139
32	Twenty Years of Calcium Imaging: Cell Physiology to Dye For. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 112-127.	3.4	42
33	Ca2+ Homeostasis during Mitochondrial Fragmentation and Perinuclear Clustering Induced by hFis1. Journal of Biological Chemistry, 2004, 279, 22704-22714.	3.4	183
34	Measurements of the free luminal ER Ca 2+ concentration with targeted "cameleon―fluorescent proteins. Cell Calcium, 2003, 34, 109-119.	2.4	113
35	Sustained Ca2+ Transfer across Mitochondria Is Essential for Mitochondrial Ca2+ Buffering, Store-operated Ca2+ Entry, and Ca2+ Store Refilling. Journal of Biological Chemistry, 2003, 278, 44769-44779.	3.4	170
36	Mitochondria Efficiently Buffer Subplasmalemmal Ca2+Elevation during Agonist Stimulation. Journal of Biological Chemistry, 2003, 278, 10807-10815.	3.4	84

#	ARTICLE	IF	CITATION
37	Calreticulin Differentially Modulates Calcium Uptake and Release in the Endoplasmic Reticulum and Mitochondria. Journal of Biological Chemistry, 2002, 277, 46696-46705.	3.4	141
38	Subplasmalemmal endoplasmic reticulum controls KCachannel activity upon stimulation with a moderate histamine concentration in a human umbilical vein endothelial cell line. Journal of Physiology, 2002, 540, 73-84.	2.9	37
39	Tissue-specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice. British Journal of Pharmacology, 2002, 135, 143-154.	5.4	25
40	Histamineâ€induced Ca 2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca 2+ â€ATPase. Journal of Physiology, 2000, 524, 701-713.	2.9	73
41	Subplasmalemmal ryanodineâ€sensitive Ca 2+ release contributes to Ca 2+ â€dependent K + channel activation in a human umbilical vein endothelial cell line. Journal of Physiology, 2000, 524, 715-724.	2.9	30
42	An intercellular regenerative calcium wave in porcine coronary artery endothelial cells in primary culture. Journal of Physiology, 1998, 513, 103-116.	2.9	52