
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1021091/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Sulfurization Engineering of Oneâ€Step Lowâ€Temperature MoS <sub>2</sub> and WS <sub>2</sub> Thin<br>Films for Memristor Device Applications. Advanced Electronic Materials, 2022, 8, 2100515. | 2.6  | 14        |
| 2  | Rollâ€ŧoâ€Roll Dry Transfer of Largeâ€Scale Graphene. Advanced Materials, 2022, 34, e2106615.                                                                                                  | 11.1 | 32        |
| 3  | Mixed Ionicâ€Electronic Charge Transport in Layered Blackâ€Phosphorus for Lowâ€Power Memory.<br>Advanced Functional Materials, 2022, 32, 2107068.                                              | 7.8  | 16        |
| 4  | Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosensors and Bioelectronics, 2022, 200, 113890.    | 5.3  | 41        |
| 5  | Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide. ACS Nano, 2022, 16, 3756-3767.                                                                                                      | 7.3  | 16        |
| 6  | Integrated ultra-high-performance graphene optical modulator. Nanophotonics, 2022, 11, 4011-4016.                                                                                              | 2.9  | 24        |
| 7  | Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.                                                                                                                                                | 7.3  | 0         |
| 8  | 2D materials for future heterogeneous electronics. Nature Communications, 2022, 13, 1392.                                                                                                      | 5.8  | 174       |
| 9  | Electronic Tattoos. , 2022, , .                                                                                                                                                                |      | 1         |
| 10 | Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. Npj 2D Materials and Applications, 2022, 6, .                        | 3.9  | 18        |
| 11 | Monolayer molybdenum disulfide switches for 6G communication systems. Nature Electronics, 2022, 5, 367-373.                                                                                    | 13.1 | 31        |
| 12 | Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science, 2022, 376, .                                                                    | 6.0  | 220       |
| 13 | Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos.<br>Nature Nanotechnology, 2022, 17, 864-870.                                                      | 15.6 | 79        |
| 14 | Integration paths for Xenes. , 2022, , 405-438.                                                                                                                                                |      | 1         |
| 15 | Graphene electronic tattoos 2.0 with enhanced performance, breathability and robustness. Npj 2D<br>Materials and Applications, 2022, 6, .                                                      | 3.9  | 14        |
| 16 | Observation of single-defect memristor in an MoS2 atomic sheet. Nature Nanotechnology, 2021, 16, 58-62.                                                                                        | 15.6 | 148       |
| 17 | Thermoelectric effect and devices on <scp>IVA</scp> and <scp>VA</scp> Xenes. InformaÄnÃ-Materiály,<br>2021, 3, 271-292.                                                                        | 8.5  | 17        |
| 18 | Multipurpose and Reusable Ultrathin Electronic Tattoos Based on PtSe <sub>2</sub> and<br>PtTe <sub>2</sub> . ACS Nano, 2021, 15, 2800-2811.                                                    | 7.3  | 46        |

| #  | Article                                                                                                                                                                                                                                                                        | IF                          | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|
| 19 | Phonon-Mediated Interlayer Charge Separation and Recombination in a<br>MoSe <sub>2</sub> /WSe <sub>2</sub> Heterostructure. Nano Letters, 2021, 21, 2165-2173.                                                                                                                 | 4.5                         | 46        |
| 20 | Reduced Graphene Oxide Tattoo as Wearable Proximity Sensor. Advanced Electronic Materials, 2021, 7, 2001214.                                                                                                                                                                   | 2.6                         | 22        |
| 21 | Two-Step Growth of Uniform Monolayer MoS <sub>2</sub> Nanosheets by Metal–Organic Chemical<br>Vapor Deposition. ACS Omega, 2021, 6, 10343-10351.                                                                                                                               | 1.6                         | 14        |
| 22 | Fabrication, characterization and applications of graphene electronic tattoos. Nature Protocols, 2021, 16, 2395-2417.                                                                                                                                                          | 5.5                         | 59        |
| 23 | Direct growth of <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt; <mml:msub> <mml:mi> MoS </mml:mi> <mml:mn> 2 on electrolytic substrate and realization of high-mobility transistors. Physical Review Materials, 2021,<br/>5</mml:mn></mml:msub></mml:math<br> | ıl:mŋ> <td>ml:msub&gt;</td> | ml:msub>  |
| 24 | Synthesis and characterization of Cr2C MXenes. Journal of Materials Research, 2021, 36, 1980-1989.                                                                                                                                                                             | 1.2                         | 23        |
| 25 | A Case of Metastatic Uterine Tumor Originating from Small-Cell Lung Cancer (SCLC) Mimicking Uterine<br>Sarcoma. Case Reports in Obstetrics and Gynecology, 2021, 2021, 1-4.                                                                                                    | 0.2                         | 3         |
| 26 | Neuromorphic Active Pixel Image Sensor Array for Visual Memory. ACS Nano, 2021, 15, 15362-15370.                                                                                                                                                                               | 7.3                         | 52        |
| 27 | A Small-Signal Description of Black-Phosphorus Transistor Technologies for High-Frequency<br>Applications. IEEE Microwave and Wireless Components Letters, 2021, 31, 1055-1058.                                                                                                | 2.0                         | 1         |
| 28 | Growth Mechanisms and Morphology Engineering of Atomic Layer-Deposited WS <sub>2</sub> . ACS<br>Applied Materials & Interfaces, 2021, 13, 43115-43122.                                                                                                                         | 4.0                         | 12        |
| 29 | A Library of Atomically Thin 2D Materials Featuring the Conductiveâ€Point Resistive Switching<br>Phenomenon. Advanced Materials, 2021, 33, e2007792.                                                                                                                           | 11.1                        | 67        |
| 30 | On the stochastic nature of conductive points formation and their effects on reliability of MoS2<br>RRAM: Experimental characterization and Monte Carlo simulation. Microelectronics Reliability, 2021,<br>126, 114274.                                                        | 0.9                         | 2         |
| 31 | ReSe2-Based RRAM and Circuit-Level Model for Neuromorphic Computing. Frontiers in Nanotechnology, 2021, 3, .                                                                                                                                                                   | 2.4                         | 9         |
| 32 | Atomic Electrostatic Maps of Point Defects in MoS <sub>2</sub> . Nano Letters, 2021, 21, 10157-10164.                                                                                                                                                                          | 4.5                         | 14        |
| 33 | Wafer-Scale Synthesis of WS <sub>2</sub> Films with In Situ Controllable p-Type Doping by Atomic<br>Layer Deposition. Research, 2021, 2021, 9862483.                                                                                                                           | 2.8                         | 10        |
| 34 | 2D RRAM and Verilog-A model for Neuromorphic Computing. , 2021, , .                                                                                                                                                                                                            |                             | 1         |
| 35 | Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nature Electronics, 2020, 3, 638-645.                                                                                                          | 13.1                        | 222       |
| 36 | Understanding of multiple resistance states by current sweeping in MoS <sub>2</sub> -based non-volatile memory devices. Nanotechnology, 2020, 31, 465206.                                                                                                                      | 1.3                         | 19        |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic<br>Information Processing. ACS Nano, 2020, 14, 13406-13417.                | 7.3  | 75        |
| 38 | Disassembling Silicene from Native Substrate and Transferring onto an Arbitrary Target Substrate.<br>Advanced Functional Materials, 2020, 30, 2004546.                   | 7.8  | 21        |
| 39 | A comprehensive investigation of MoO <sub>3</sub> based resistive random access memory. RSC Advances, 2020, 10, 19337-19345.                                             | 1.7  | 22        |
| 40 | Insulators for 2D nanoelectronics: the gap to bridge. Nature Communications, 2020, 11, 3385.                                                                             | 5.8  | 241       |
| 41 | Graphene-Based Biosensor for Early Detection of Iron Deficiency. Sensors, 2020, 20, 3688.                                                                                | 2.1  | 28        |
| 42 | Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers. Nature Communications, 2020, 11, 3203.       | 5.8  | 31        |
| 43 | Atomristors: Non-Volatile Resistance Switching in 2D Monolayers. , 2020, , .                                                                                             |      | 2         |
| 44 | Nb-Doped MXene With Enhanced Energy Storage Capacity and Stability. Frontiers in Chemistry, 2020, 8, 168.                                                                | 1.8  | 57        |
| 45 | Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nature Electronics, 2020, 3, 479-485.                    | 13.1 | 86        |
| 46 | Resistance state evolution under constant electric stress on a MoS <sub>2</sub> non-volatile resistive switching device. RSC Advances, 2020, 10, 42249-42255.            | 1.7  | 8         |
| 47 | Oxygen-assisted synthesis of hBN films for resistive random access memories. Applied Physics Letters, 2019, 115, .                                                       | 1.5  | 21        |
| 48 | Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573, 507-518.                                                                               | 13.7 | 936       |
| 49 | Electron redistribution and energy transfer in graphene/MoS2 heterostructure. Applied Physics<br>Letters, 2019, 114, .                                                   | 1.5  | 15        |
| 50 | Chemical vapor deposition of hexagonal boron nitride on metal-coated wafers and transfer-free fabrication of resistive switching devices. 2D Materials, 2019, 6, 035021. | 2.0  | 23        |
| 51 | Thinnest Nonvolatile Memory Based on Monolayer hâ€BN. Advanced Materials, 2019, 31, e1806790.                                                                            | 11.1 | 174       |
| 52 | Visualization of Local Conductance in MoS <sub>2</sub> /WSe <sub>2</sub> Heterostructure<br>Transistors. Nano Letters, 2019, 19, 1976-1981.                              | 4.5  | 36        |
| 53 | Non-volatile RF and mm-wave Switches Based on Monolayer hBN. , 2019, , .                                                                                                 |      | 10        |
| 54 | Large-signal model of 2DFETs: compact modeling of terminal charges and intrinsic capacitances. Npj 2D<br>Materials and Applications, 2019, 3, .                          | 3.9  | 15        |

| #  | Article                                                                                                                                                                                                                                                                                   | IF                                                   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|
| 55 | Ti <sub>3</sub> C <sub>2</sub> -MXene/Bismuth Ferrite Nanohybrids for Efficient Degradation of<br>Organic Dyes and Colorless Pollutants. ACS Omega, 2019, 4, 20530-20539.                                                                                                                 | 1.6                                                  | 119       |
| 56 | Electrical Characterization of Graphene-based e-Tattoos for Bio-Impedance-based Physiological Sensing. , 2019, , .                                                                                                                                                                        |                                                      | 17        |
| 57 | Recommended Methods to Study Resistive Switching Devices. Advanced Electronic Materials, 2019, 5, 1800143.                                                                                                                                                                                | 2.6                                                  | 452       |
| 58 | Composition-dependent structural transition in epitaxial <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt; <mml:mrow> <mml:msub> <mml:mi>Bi </mml:mi> <mml:r<br>thin films on Si(111). Physical Review Materials, 2019, 3, .</mml:r<br></mml:msub></mml:mrow></mml:math<br> | nro <b>ø.9</b> <mr< td=""><td>nl:mon&gt;1</td></mr<> | nl:mon>1  |
| 59 | Structural, vibrational, and electronic topological transitions of Bi1.5Sb0.5Te1.8Se1.2 under pressure.<br>Journal of Applied Physics, 2018, 123, .                                                                                                                                       | 1.1                                                  | 14        |
| 60 | Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides.<br>Nano Letters, 2018, 18, 434-441.                                                                                                                                                    | 4.5                                                  | 375       |
| 61 | An RRAM with a 2D Material Embedded Double Switching Layer for Neuromorphic Computing. , 2018, , .                                                                                                                                                                                        |                                                      | 3         |
| 62 | Anisotropic Electron–Phonon Interactions in Angle-Resolved Raman Study of Strained Black<br>Phosphorus. ACS Nano, 2018, 12, 12512-12522.                                                                                                                                                  | 7.3                                                  | 33        |
| 63 | Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation. ACS Nano, 2018, 12, 10383-10392.                                                                                                                                                                                    | 7.3                                                  | 41        |
| 64 | Efficient Visible-Light Photocatalysis of 2D-MXene Nanohybrids with Gd <sup>3+</sup> - and<br>Sn <sup>4+</sup> -Codoped Bismuth Ferrite. ACS Omega, 2018, 3, 13828-13836.                                                                                                                 | 1.6                                                  | 121       |
| 65 | Zero-static power radio-frequency switches based on MoS2 atomristors. Nature Communications, 2018, 9, 2524.                                                                                                                                                                               | 5.8                                                  | 126       |
| 66 | Silicene, silicene derivatives, and their device applications. Chemical Society Reviews, 2018, 47, 6370-6387.                                                                                                                                                                             | 18.7                                                 | 261       |
| 67 | Imperceptible electrooculography graphene sensor system for human–robot interface. Npj 2D<br>Materials and Applications, 2018, 2, .                                                                                                                                                       | 3.9                                                  | 114       |
| 68 | Recent Progress on Stability and Passivation of Black Phosphorus. Advanced Materials, 2018, 30, e1704749.                                                                                                                                                                                 | 11.1                                                 | 248       |
| 69 | Optothermoplasmonic Nanolithography for Onâ€Demand Patterning of 2D Materials. Advanced<br>Functional Materials, 2018, 28, 1803990.                                                                                                                                                       | 7.8                                                  | 35        |
| 70 | Recent development of two-dimensional transition metal dichalcogenides and their applications.<br>Materials Today, 2017, 20, 116-130.                                                                                                                                                     | 8.3                                                  | 1,852     |
| 71 | Buckled two-dimensional Xene sheets. Nature Materials, 2017, 16, 163-169.                                                                                                                                                                                                                 | 13.3                                                 | 641       |
| 72 | Direct Observation of Poly(Methyl Methacrylate) Removal from a Graphene Surface. Chemistry of<br>Materials, 2017, 29, 2033-2039.                                                                                                                                                          | 3.2                                                  | 41        |

| #  | Article                                                                                                                                                                                                                                                                                                       | IF                | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 73 | A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme<br>Mechanics Letters, 2017, 13, 42-77.                                                                                                                                                                           | 2.0               | 920       |
| 74 | Silicon Nanosheets: Crossover between Multilayer Silicene and Diamond-like Growth Regime. ACS Nano, 2017, 11, 3376-3382.                                                                                                                                                                                      | 7.3               | 61        |
| 75 | Printing functional atomic layers. Nature Nanotechnology, 2017, 12, 287-288.                                                                                                                                                                                                                                  | 15.6              | 10        |
| 76 | Graphene Electronic Tattoo Sensors. ACS Nano, 2017, 11, 7634-7641.                                                                                                                                                                                                                                            | 7.3               | 476       |
| 77 | Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle<br>to monolayer MoS2. Nanoscale, 2017, 9, 13947-13955.                                                                                                                                                       | 2.8               | 35        |
| 78 | 3D integrated monolayer graphene–Si CMOS RF gas sensor platform. Npj 2D Materials and Applications, 2017, 1, .                                                                                                                                                                                                | 3.9               | 38        |
| 79 | Temperature and Thickness Dependences of the Anisotropic Inâ€Plane Thermal Conductivity of Black<br>Phosphorus. Advanced Materials, 2017, 29, 1603756.                                                                                                                                                        | 11.1              | 99        |
| 80 | Black phosphorus flexible thin film transistors and GHz circuit applications. , 2017, , .                                                                                                                                                                                                                     |                   | 0         |
| 81 | 2D nanoelectronics: From graphene to silicene and beyond. , 2017, , .                                                                                                                                                                                                                                         |                   | 0         |
| 82 | Largeâ€Area Monolayer MoS <sub>2</sub> for Flexible Lowâ€Power RF Nanoelectronics in the GHz Regime.<br>Advanced Materials, 2016, 28, 1818-1823.                                                                                                                                                              | 11.1              | 161       |
| 83 | Pressureâ€Induced Charge Transfer Doping of Monolayer Graphene/MoS <sub>2</sub> Heterostructure.<br>Small, 2016, 12, 4063-4069.                                                                                                                                                                               | 5.2               | 45        |
| 84 | Electrical performance enhancement of 20 nm scale graphene nanoribbon field-effect transistors with dipolar molecules. , 2016, , .                                                                                                                                                                            |                   | 0         |
| 85 | Chemical-sensitive graphene modulator with a memory effect for internet-of-things applications.<br>Microsystems and Nanoengineering, 2016, 2, 16018.                                                                                                                                                          | 3.4               | 36        |
| 86 | A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring.<br>Scientific Reports, 2016, 6, 18795.                                                                                                                                                                          | 1.6               | 29        |
| 87 | Origin of superconductivity in the Weyl semimetal <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mrow><mml:mi>WT</mml:mi><mml:msub><mml:m<br>mathvariant="normal"&gt;e<mml:mn>2</mml:mn></mml:m<br></mml:msub></mml:mrow> under<br/>pressure. Physical Review B. 2016. 94.</mml:math<br> | <sup>1i</sup> 1.1 | 91        |
| 88 | Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. ACS Nano, 2016, 10, 9543-9549.                                                                                                                                                                                              | 7.3               | 158       |
| 89 | Uncovering edge states and electrical inhomogeneity in MoS <sub>2</sub> field-effect transistors.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8583-8588.                                                                                                   | 3.3               | 94        |
|    |                                                                                                                                                                                                                                                                                                               |                   |           |

90 Flexible 2D nanoelectronics from baseband to sub-THz transistors and circuits. , 2016, , .

1

| #   | Article                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films. Nano Letters, 2016, 16, 6931-6938.                                                             | 4.5  | 87        |
| 92  | Layer-by-Layer Assembly of Two-Dimensional Colloidal Cu <sub>2</sub> Se Nanoplates and Their<br>Layer-Dependent Conductivity. Chemistry of Materials, 2016, 28, 4307-4314. | 3.2  | 28        |
| 93  | Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies. Nano Letters, 2016, 16, 2301-2306.                                                                | 4.5  | 137       |
| 94  | Extremely High-Frequency Flexible Graphene Thin-Film Transistors. IEEE Electron Device Letters, 2016, 37, 512-515.                                                         | 2.2  | 42        |
| 95  | Mixed-mode traction-separation relations between graphene and copper by blister tests. International<br>Journal of Solids and Structures, 2016, 84, 147-159.               | 1.3  | 39        |
| 96  | Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016, 10, 1404-1410.           | 7.3  | 69        |
| 97  | Bubble-Pen Lithography. Nano Letters, 2016, 16, 701-708.                                                                                                                   | 4.5  | 170       |
| 98  | High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices. , 2015, , .                                                    |      | 14        |
| 99  | Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 2015, 10, 227-231.                                                                 | 15.6 | 1,429     |
| 100 | Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects. ACS Nano, 2015, 9, 1325-1335.                                                          | 7.3  | 104       |
| 101 | Flexible Black Phosphorus Ambipolar Transistors, Circuits and AM Demodulator. Nano Letters, 2015, 15, 1883-1890.                                                           | 4.5  | 394       |
| 102 | Radio Frequency Transistors and Circuits Based on CVD MoS <sub>2</sub> . Nano Letters, 2015, 15, 5039-5045.                                                                | 4.5  | 144       |
| 103 | Thermal Oxidation of WSe <sub>2</sub> Nanosheets Adhered on SiO <sub>2</sub> /Si Substrates. Nano<br>Letters, 2015, 15, 4979-4984.                                         | 4.5  | 84        |
| 104 | Toward air-stable multilayer phosphorene thin-films and transistors. Scientific Reports, 2015, 5, 8989.                                                                    | 1.6  | 344       |
| 105 | Mixed-Mode Interactions Between Graphene and Substrates by Blister Tests. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .                                     | 1.1  | 25        |
| 106 | Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.                                                                              | 7.3  | 2,069     |
| 107 | Pressure-Modulated Conductivity, Carrier Density, and Mobility of Multilayered Tungsten Disulfide.<br>ACS Nano, 2015, 9, 9117-9123.                                        | 7.3  | 120       |
| 108 | Graphene based GHz flexible nanoelectronics and radio receiver systems (Invited). , 2015, , .                                                                              |      | 2         |

7

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano<br>Letters, 2015, 15, 346-353.                                                                       | 4.5 | 284       |
| 110 | Flexible graphite antennas for plastic electronics. , 2014, , .                                                                                                                                    |     | 3         |
| 111 | Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5, 5678.                                                                                                                    | 5.8 | 1,533     |
| 112 | Impact of contact and access resistances in graphene field-effect transistors on quartz substrates for radio frequency applications. Applied Physics Letters, 2014, 104, .                         | 1.5 | 4         |
| 113 | Direct Delamination of Graphene for Highâ€Performance Plastic Electronics. Small, 2014, 10, 694-698.                                                                                               | 5.2 | 52        |
| 114 | Enhanced Dielectric Performance in Polymer Composite Films with Carbon Nanotubeâ€Reduced<br>Graphene Oxide Hybrid Filler. Small, 2014, 10, 3405-3411.                                              | 5.2 | 116       |
| 115 | Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide.<br>Nature Communications, 2014, 5, 3731.                                                             | 5.8 | 495       |
| 116 | Flexible and Transparent Dielectric Film with a High Dielectric Constant Using Chemical Vapor<br>Deposition-Grown Graphene Interlayer. ACS Nano, 2014, 8, 269-274.                                 | 7.3 | 63        |
| 117 | Towards the design and fabrication of graphene based flexible GHz radio receiver systems. , 2014, , .                                                                                              |     | 9         |
| 118 | On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Applied Physics Letters, 2014, 104, .                           | 1.5 | 173       |
| 119 | Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene<br>Transistors. ACS Nano, 2014, 8, 10471-10479.                                                    | 7.3 | 87        |
| 120 | Graphene-Based Plasmonic Platform for Reconfigurable Terahertz Nanodevices. ACS Photonics, 2014, 1, 647-654.                                                                                       | 3.2 | 53        |
| 121 | Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. ,<br>2013, , .                                                                                    |     | 0         |
| 122 | 25 GHz Embedded-Gate Graphene Transistors with High-K Dielectrics on Extremely Flexible Plastic Sheets. ACS Nano, 2013, 7, 7744-7750.                                                              | 7.3 | 127       |
| 123 | Graphene Synthesis <i>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499.                                                                                       | 7.3 | 77        |
| 124 | Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. ,<br>2013, , .                                                                                    |     | 1         |
| 125 | Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. ,<br>2013, , .                                                                                    |     | 2         |
| 126 | High-Performance Current Saturating Graphene Field-Effect Transistor With Hexagonal Boron Nitride<br>Dielectric on Flexible Polymeric Substrates. IEEE Electron Device Letters, 2013, 34, 172-174. | 2.2 | 53        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Enhancement of the Electrical Properties of Graphene Grown by Chemical Vapor Deposition via<br>Controlling the Effects of Polymer Residue. Nano Letters, 2013, 13, 1462-1467.                      | 4.5  | 324       |
| 128 | Chlorination of Reduced Graphene Oxide Enhances the Dielectric Constant of Reduced Graphene Oxide/Polymer Composites. Advanced Materials, 2013, 25, 2308-2313.                                     | 11.1 | 176       |
| 129 | High-Performance, Highly Bendable MoS <sub>2</sub> Transistors with High-K Dielectrics for Flexible<br>Low-Power Systems. ACS Nano, 2013, 7, 5446-5452.                                            | 7.3  | 445       |
| 130 | Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. ,<br>2013, , .                                                                                    |      | 0         |
| 131 | Transformation of the Electrical Characteristics of Graphene Field-Effect Transistors with Fluoropolymer. ACS Applied Materials & Interfaces, 2013, 5, 16-20.                                      | 4.0  | 37        |
| 132 | State-of-the-art flexible 2D nanoelectronics based on graphene and MoS <inf>2</inf> . , 2013, ,                                                                                                    |      | 1         |
| 133 | High-performance flexible nanoelectronics: 2D atomic channel materials for low-power digital and high-frequency analog devices. , 2013, , .                                                        |      | 17        |
| 134 | Properties and Applications of Electrically Small Folded Ellipsoidal Helix Antenna. IEEE Antennas and<br>Wireless Propagation Letters, 2012, 11, 678-681.                                          | 2.4  | 13        |
| 135 | Highly bendable high-mobility graphene field effect transistors with multi-finger embedded gates on flexible substrates. , 2012, , .                                                               |      | 1         |
| 136 | State-of-the-art graphene transistors on hexagonal boron nitride, high-k, and polymeric films for GHz flexible analog nanoelectronics. , 2012, , .                                                 |      | 7         |
| 137 | Distributed Amplifiers Based on Spindt-Type Field-Emission Nanotriodes. IEEE Nanotechnology<br>Magazine, 2012, 11, 1201-1211.                                                                      | 1.1  | 9         |
| 138 | Simultaneous Transfer and Doping of CVD-Grown Graphene by Fluoropolymer for Transparent<br>Conductive Films on Plastic. ACS Nano, 2012, 6, 1284-1290.                                              | 7.3  | 113       |
| 139 | Multi-finger flexible graphene field effect transistors with high bendability. Applied Physics Letters, 2012, 101, .                                                                               | 1.5  | 42        |
| 140 | Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality<br>Comparable to Exfoliated Monolayer. Journal of Physical Chemistry C, 2012, 116, 24068-24074. | 1.5  | 69        |
| 141 | Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched<br>Evaporated Copper (111) Films. ACS Nano, 2012, 6, 2319-2325.                                           | 7.3  | 160       |
| 142 | Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation. Nano Letters, 2012, 12, 2374-2378.                                                                               | 4.5  | 222       |
| 143 | Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Applied<br>Physics Letters, 2012, 100, .                                                                 | 1.5  | 60        |
| 144 | An exactly solvable model for the graphene transistor in the quantum capacitance limit. Applied<br>Physics Letters, 2012, 101, 053501.                                                             | 1.5  | 27        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Nanostructured Hybrid Transparent Conductive Films with Antibacterial Properties. ACS Nano, 2012, 6, 5157-5163.                                                                                       | 7.3 | 139       |
| 146 | Electrically small folded ellipsoidal helix antenna for medical implant applications. , 2011, , .                                                                                                     |     | 11        |
| 147 | Impact of contact resistance on the transconductance and linearity of graphene transistors. Applied Physics Letters, 2011, 98, .                                                                      | 1.5 | 64        |
| 148 | CMOS-Compatible Synthesis of Large-Area, High-Mobility Graphene by Chemical Vapor Deposition of Acetylene on Cobalt Thin Films. ACS Nano, 2011, 5, 7198-7204.                                         | 7.3 | 109       |
| 149 | Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS<br>Electronics. IEEE Transactions on Electron Devices, 2010, 57, 3137-3143.                                 | 1.6 | 127       |
| 150 | Monolithic Integration of CMOS VLSI and Carbon Nanotubes for Hybrid Nanotechnology Applications.<br>IEEE Nanotechnology Magazine, 2008, 7, 636-639.                                                   | 1.1 | 40        |
| 151 | Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection. Journal of Applied Physics, 2008, 104, 124514. | 1.1 | 54        |
| 152 | Novel physical sensors using evanescent microwave probes. Review of Scientific Instruments, 1999, 70, 3381-3386.                                                                                      | 0.6 | 41        |
| 153 | Memristors Based on 2D Monolayer Materials. , 0, , .                                                                                                                                                  |     | 1         |