Guodong Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1020932/publications.pdf

Version: 2024-02-01

272 papers

32,691 citations

75 h-index 175

277 all docs

277 docs citations

times ranked

277

20225 citing authors

g-index

#	Article	IF	CITATIONS
1	Lanthanide doped fluorosilicate glass-ceramics: A review on experimental and theoretical progresses. Journal of Rare Earths, 2022, 40, 169-192.	2.5	22
2	Scalable Synthesis of NiFe‣DH/Ni ₉ 8NF Nanosheets by Twoâ€6tep Corrosion for Efficient Oxygen Electrocatalysis. ChemCatChem, 2022, 14, .	1.8	10
3	Fluorescence–Phosphorescence Manipulation and Atom Probe Observation of Fully Inorganic Silver Quantum Clusters: Imitating from and Behaving beyond Organic Hosts. Advanced Optical Materials, 2022, 10, 2101632.	3.6	7
4	Boosting Hydrogen Evolution through the Interface Effects of Amorphous NiMoO ₄ –MoO ₂ and Crystalline Cu. ACS Omega, 2022, 7, 2244-2251.	1.6	5
5	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society, 2022, 144, 2614-2623.	6.6	127
6	Robust and Radiation-Resistant Hofmann-Type Metal–Organic Frameworks for Record Xenon/Krypton Separation. Journal of the American Chemical Society, 2022, 144, 3200-3209.	6.6	71
7	Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal–Organic Framework for Benchmark Waterâ€Sorptionâ€Driven Heat Allocations. Advanced Science, 2022, 9, e2105556.	5.6	17
8	An adenosine triphosphate-responsive metal–organic framework decorated with palladium nanosheets for synergistic tri-modal therapy. CrystEngComm, 2022, 24, 2558-2566.	1.3	3
9	Stable and wide-wavelength tunable luminescence of CsPbX ₃ nanocrystals encapsulated in metal–organic frameworks. Journal of Materials Chemistry C, 2022, 10, 5550-5558.	2.7	21
10	Cationic Metal–Organic Framework-Based Mixed-Matrix Membranes for Fast Sensing and Removal of Cr2O72┠Within Water. Frontiers in Chemistry, 2022, 10, 852402.	1.8	5
11	O,N-Codoped CeF ₃ Upconversion Nanoparticles for Efficient Photocatalytic Oxygen Evolution under Visible Light. ACS Applied Nano Materials, 2022, 5, 5096-5102.	2.4	3
12	Polarized Laser Switching with Giant Contrast in MOFâ€Based Mixedâ€Matrix Membrane. Advanced Science, 2022, 9, e2200953.	5.6	12
13	Enhanced luminescence in multivariate metal–organic frameworks through an isolated-ligand strategy. Journal of Materials Chemistry C, 2022, 10, 10473-10479.	2.7	7
14	Luminescent Metal–Organic Frameworks for White LEDs. Advanced Optical Materials, 2021, 9, 2001817.	3.6	71
15	Nonlinear optical metal-organic frameworks for ratiometric temperature sensing in physiological range. Chinese Chemical Letters, 2021, 32, 1511-1514.	4.8	24
16	Designed construction of hierarchical CoOOH@Co–FeOOH double-shelled arrays as superior water oxidation electrocatalyst. Journal of Solid State Chemistry, 2021, 294, 121867.	1.4	17
17	Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co(OH) ₂ nanosheet arrays. Nanoscale Advances, 2021, 3, 604-610.	2.2	22
18	Tunable nonlinear optical responses based on host-guest MOF hybrid materials. Science China Materials, 2021, 64, 698-705.	3.5	23

#	Article	IF	Citations
19	Structural Variation and Switchable Nonlinear Optical Behavior of Metal–Organic Frameworks. Small, 2021, 17, e2006649.	5.2	30
20	A novel anion-pillared metal–organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 9248-9255.	5.2	55
21	Efficient CO ₂ /CO separation in a stable microporous hydrogen-bonded organic framework. Chemical Communications, 2021, 57, 10051-10054.	2.2	20
22	An MOFâ€Based Luminescent Sensor Array for Pattern Recognition and Quantification of Metal Ions. Advanced Optical Materials, 2021, 9, 2002180.	3.6	48
23	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie - International Edition, 2021, 60, 10304-10310.	7.2	104
24	A Novel Hydrogen-Bonded Organic Framework with Highly Permanent Porosity for Boosting Ethane/Ethylene Separation., 2021, 3, 497-503.		46
25	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie, 2021, 133, 10392-10398.	1.6	29
26	Chemically Stable Hafnium-Based Metal–Organic Framework for Highly Efficient C ₂ H ₆ /C ₂ Hcsub>4 Separation under Humid Conditions. ACS Applied Materials & Diterraces, 2021, 13, 18792-18799.	4.0	34
27	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie, 2021, 133, 16131-16138.	1.6	43
28	Cu ²⁺ -Guided Construction of the Amorphous CoMoO ₃ /Cu Nanocomposite for Highly Efficient Water Electrolysis. ACS Applied Energy Materials, 2021, 4, 6740-6748.	2.5	8
29	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie - International Edition, 2021, 60, 15995-16002.	7.2	148
30	Dyes Encapsulated Nanoscale Metal–Organic Frameworks for Multimode Temperature Sensing with High Spatial Resolution., 2021, 3, 1426-1432.		36
31	Dense Packing of Acetylene in a Stable and Lowâ€Cost Metalâ€"Organic Framework for Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 25068-25074.	7.2	116
32	Highly Efficient Encapsulation of Doxorubicin Hydrochloride in Metal–Organic Frameworks for Synergistic Chemotherapy and Chemodynamic Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 4999-5006.	2.6	21
33	Sacrificial Reagent Free Photocatalytic Oxygen Evolution over CeF ₃ ∫ı±â€FeOOH Nanohybrid. Advanced Materials Interfaces, 2021, 8, 2101161.	1.9	3
34	Engineering Different Reaction Centers on Hierarchical Ni/NiFe Layered Double Hydroxide Accelerating Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 9858-9865.	2.5	9
35	Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. Journal of Solid State Chemistry, 2020, 281, 121032.	1.4	64
36	Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation. Journal of Materials Chemistry A, 2020, 8, 3613-3620.	5.2	120

#	Article	IF	Citations
37	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2020, 142, 633-640.	6.6	183
38	Switchable Twoâ€Photon Pumped Polarized Lasing Performance in Compositionâ€Graded MOFs Based Heterostructures. Advanced Optical Materials, 2020, 8, 2001089.	3.6	15
39	Lanthanide metal–organic frameworks with nitrogen functional sites for the highly selective and sensitive detection of NADPH. Chemical Communications, 2020, 56, 10851-10854.	2.2	21
40	Polyurethane-coated luminescent dye@MOF composites for highly-stable white LEDs. Journal of Materials Chemistry C, 2020, 8, 12308-12313.	2.7	28
41	Controllable broadband multicolour single-mode polarized laser in a dye-assembled homoepitaxial MOF microcrystal. Light: Science and Applications, 2020, 9, 138.	7.7	30
42	Temperature dependent molecular fluorescence of [Agm]n+ quantum clusters stabilized by phosphate glass networks. Physical Chemistry Chemical Physics, 2020, 22, 21307-21316.	1.3	7
43	Energy Transfer in Metal–Organic Frameworks and Its Applications. Small Structures, 2020, 1, 2000019.	6.9	26
44	Hyper oxygen incorporation in CeF ₃ : a new intermediate-band photocatalyst for antibiotic degradation under visible/NIR light. RSC Advances, 2020, 10, 38798-38804.	1.7	8
45	A Chemically Stable Hofmannâ€Type Metalâ^'Organic Framework with Sandwich‣ike Binding Sites for Benchmark Acetylene Capture. Advanced Materials, 2020, 32, e1908275.	11.1	236
46	Ca ²⁺ /Sr ²⁺ /Ba ²⁺ dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass. Journal of the American Ceramic Society, 2020, 103, 5796-5807.	1.9	14
47	A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device. Microporous and Mesoporous Materials, 2020, 305, 110396.	2.2	24
48	A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986.	1.8	38
49	Controlled dye release from a metal–organic framework: a new luminescent sensor for water. RSC Advances, 2020, 10, 2722-2726.	1.7	8
50	Nano Anatase TiO ₂ Quasi-Coreâ€"Shell Homophase Junction Induced by a Ti ³⁺ Concentration Difference for Highly Efficient Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 3330-3339.	1.9	5
51	Visibleâ€NIR Photodetectors Based on Lowâ€Dimensional GeSe Microâ€Crystals: Designed Morphology and Improved Photoresponsivity. ChemPhysChem, 2020, 21, 397-405.	1.0	7
52	Morphology regulation of metal–organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 18215-18219.	5.2	168
53	Broadband Extrinsic Selfâ€Trapped Exciton Emission in Snâ€Doped 2D Leadâ€Halide Perovskites. Advanced Materials, 2019, 31, e1806385.	11.1	198
54	Multiâ€phase glassâ€ceramics containing CaF ₂ : Er ³⁺ and ZnAl ₂ O ₄ :Cr ³⁺ nanocrystals for optical temperature sensing. Journal of the American Ceramic Society, 2019, 102, 2472-2481.	1.9	24

#	Article	IF	CITATIONS
55	Photo-induced electron transfer in a metal–organic framework: a new approach towards a highly sensitive luminescent probe for Fe ³⁺ . Chemical Communications, 2019, 55, 11231-11234.	2.2	55
56	Post-modified metal-organic framework as a turn-on fluorescent probe for potential diagnosis of neurological diseases. Microporous and Mesoporous Materials, 2019, 288, 109610.	2.2	27
57	A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations. Journal of the European Ceramic Society, 2019, 39, 5018-5029.	2.8	28
58	Single Crystal Perovskite Microplate for Highâ€Order Multiphoton Excitation. Small Methods, 2019, 3, 1900396.	4.6	17
59	Metal-organic framework film for fluorescence turn-on H2S gas sensing and anti-counterfeiting patterns. Science China Materials, 2019, 62, 1445-1453.	3.5	31
60	Structural Origins of BaF 2 /Ba 1 \hat{a}^{\prime} x R x F 2 + x /RF 3 Nanocrystals Formation from Phase Separated Fluoroaluminosilicate Glass: A Molecular Dynamic Simulation Study. Advanced Theory and Simulations, 2019, 2, 1900062.	1.3	5
61	Enhancing Oxygen Evolution Reaction through Modulating Electronic Structure of Trimetallic Electrocatalysts Derived from Metal–Organic Frameworks. Small, 2019, 15, e1901940.	5.2	163
62	Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations. Topics in Current Chemistry, 2019, 377, 33.	3.0	31
63	Tailoring the pore geometry and chemistry in microporous metal–organic frameworks for high methane storage working capacity. Chemical Communications, 2019, 55, 11402-11405.	2.2	13
64	A luminescent metal–organic framework integrated hydrogel optical fibre as a photoluminescence sensing platform for fluorescence detection. Journal of Materials Chemistry C, 2019, 7, 897-904.	2.7	45
65	A luminescent terbium metal-organic framework for highly sensitive and selective detection of uric acid in aqueous media. Journal of Solid State Chemistry, 2019, 272, 55-61.	1.4	21
66	Isostructural Tb ³⁺ /Eu ³⁺ Co-Doped Metal–Organic Framework Based on Pyridine-Containing Dicarboxylate Ligands for Ratiometric Luminescence Temperature Sensing. Inorganic Chemistry, 2019, 58, 2637-2644.	1.9	111
67	A fluorinated Zr-based MOF of high porosity for high CH4 storage. Journal of Solid State Chemistry, 2019, 277, 139-142.	1.4	27
68	A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. Journal of Solid State Chemistry, 2019, 277, 159-162.	1.4	22
69	Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities. Science China Chemistry, 2019, 62, 987-993.	4.2	13
70	An inner light integrated metal-organic framework photodynamic therapy system for effective elimination of deep-seated tumor cells. Journal of Solid State Chemistry, 2019, 276, 205-209.	1.4	15
71	A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Science China Materials, 2019, 62, 1315-1322.	3. 5	41
72	Multivariable Sieving and Hierarchical Recognition for Organic Toxics in Nonhomogeneous Channel of MOFs. CheM, 2019, 5, 1337-1350.	5.8	59

#	Article	IF	CITATIONS
73	Stabilization of Fluorescent [Ag _{<i>m</i>}] ^{<i>n</i>+} Quantum Clusters in Multiphase Inorganic Glass-Ceramics for White LEDs. ACS Applied Nano Materials, 2019, 2, 2854-2863.	2.4	24
74	MOFâ€Based Organic Microlasers. Advanced Optical Materials, 2019, 7, 1900077.	3.6	38
75	Structural Origins of RF ₃ /NaRF ₄ Nanocrystal Precipitation from Phase-Separated SiO ₂ â€"Al ₂ O ₃ â€"RF ₃ â€"NaF Glasses: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2019, 123, 3024-3032.	1.2	22
76	Near-infrared-emissive metal–organic frameworks. Dalton Transactions, 2019, 48, 6669-6675.	1.6	24
77	A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. Journal of Solid State Chemistry, 2019, 275, 38-42.	1.4	38
78	Phase and morphology evolution of luminescent NaLnF ₄ (Ln = La to Yb) micro-crystals: understanding the ionic radii and surface energy-dependent solution growth mechanism. CrystEngComm, 2019, 21, 6652-6658.	1.3	10
79	A zirconium-based metal-organic framework with encapsulated anionic drug for uncommonly controlled oral drug delivery. Microporous and Mesoporous Materials, 2019, 275, 229-234.	2.2	47
80	Micron-Scale Photodetectors Based on One-Dimensional Single-Crystalline Sb2–xSnxSe3 Microrods: Simultaneously Improving Responsivity and Extending Spectral Response Region. Journal of Physical Chemistry C, 2019, 123, 810-816.	1.5	14
81	A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. Journal of Solid State Chemistry, 2019, 270, 317-323.	1.4	41
82	Nanoscale fluorescent metal–organic framework composites as a logic platform for potential diagnosis of asthma. Biosensors and Bioelectronics, 2019, 130, 65-72.	5.3	60
83	Confinement of Perovskiteâ€QDs within a Single MOF Crystal for Significantly Enhanced Multiphoton Excited Luminescence. Advanced Materials, 2019, 31, e1806897.	11.1	124
84	Low-Cost and High-Performance Microporous Metal–Organic Framework for Separation of Acetylene from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 1667-1672.	3.2	47
85	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	11.1	109
86	Efficient separation of C ₂ H ₂ from C ₂ H ₂ mixtures in an acidâ€"base resistant metalâ€"organic framework. Chemical Communications, 2018, 54, 4846-4849.	2.2	62
87	Ratiometric luminescence sensing based on a mixed Ce/Eu metal–organic framework. Journal of Materials Chemistry C, 2018, 6, 2054-2059.	2.7	54
88	In situ secondary growth of Eu(III)-organic framework film for fluorescence sensing of sulfur dioxide. Sensors and Actuators B: Chemical, 2018, 260, 63-69.	4.0	44
89	A Biocompatible Ti-based metal-organic framework for pH responsive drug delivery. Materials Letters, 2018, 225, 142-144.	1.3	22
90	Dye confined in metal-organic framework for two-photon fluorescent temperature sensing. Microporous and Mesoporous Materials, 2018, 268, 202-206.	2.2	20

#	Article	IF	Citations
91	Highly stable Y(<scp>iii</scp>)-based metal organic framework with two molecular building block for selective adsorption of C ₂ H ₂ and CO ₂ over CH ₄ . Inorganic Chemistry Frontiers, 2018, 5, 1193-1198.	3.0	51
92	A stable lanthanide-functionalized nanoscale metal-organic framework as a fluorescent probe for pH. Sensors and Actuators B: Chemical, 2018, 254, 1069-1077.	4.0	67
93	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	9.5	211
94	A Eu/Gd-mixed metal-organic framework for ultrasensitive physiological temperature sensing. Chinese Chemical Letters, 2018, 29, 861-864.	4.8	20
95	A highly sensitive luminescent metal–organic framework thermometer for physiological temperature sensing. Journal of Rare Earths, 2018, 36, 561-566.	2.5	27
96	A Twoâ€Dimensional Metal–Organic Framework as a Fluorescent Probe for Ascorbic Acid Sensing. European Journal of Inorganic Chemistry, 2018, 2018, 173-177.	1.0	28
97	A biocompatible metal–organic framework as a pH and temperature dual-responsive drug carrier. Dalton Transactions, 2018, 47, 15882-15887.	1.6	45
98	Synthesis, structure and temperature sensing of a lanthanide-organic framework constructed from a pyridine-containing tetracarboxylic acid ligand. CrystEngComm, 2018, 20, 7395-7400.	1.3	25
99	Stabilization of divalent Eu ²⁺ in fluorosilicate glass-ceramics <i>via</i> lattice site substitution. RSC Advances, 2018, 8, 34536-34542.	1.7	10
100	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	1.0	24
101	Cryogenic Luminescent Tb/Eu-MOF Thermometer Based on a Fluorine-Modified Tetracarboxylate Ligand. Inorganic Chemistry, 2018, 57, 12596-12602.	1.9	80
102	Efficient Energy Transfer within Dyes Encapsulated Metal–Organic Frameworks to Achieve High Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800968.	3.6	62
103	Chemical Sensing: Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors (Small 37/2018). Small, 2018, 14, 1870168.	5.2	15
104	Microporous metal–organic framework with open Cu2+ functional sites and optimized pore size for C2H2 storage and CH4 purification. Polyhedron, 2018, 155, 332-336.	1.0	7
105	Phase separation strategy to facilely form fluorescent [Ag ₂] ⁿ⁺ quantum clusters in boro-alumino-silicate multiphase glasses. Physical Chemistry Chemical Physics, 2018, 20, 23942-23947.	1.3	22
106	Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors. Small, 2018, 14, e1801563.	5.2	88
107	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
108	A Zn based anionic metal-organic framework for trace Hg2+ ion detection. Journal of Solid State Chemistry, 2018, 266, 70-73.	1.4	21

#	Article	IF	CITATIONS
109	A luminescent turn-up metal–organic framework sensor for tryptophan based on singlet–singlet F¶rster energy transfer. Journal of Materials Chemistry B, 2018, 6, 5174-5180.	2.9	61
110	Solventâ€Triggered Reversible Phase Changes in Two Manganeseâ€Based Metal–Organic Frameworks and Associated Sensing Events. Chemistry - A European Journal, 2018, 24, 13231-13237.	1.7	15
111	Rational Designed Metal-Organic Frameworks for Storage and Separation of Hydrogen and Methane. Current Organic Chemistry, 2018, 22, 1792-1808.	0.9	5
112	Ratiometric dual-emitting MOFâŠ $_f$ dye thermometers with a tunable operating range and sensitivity. Journal of Materials Chemistry C, 2017, 5, 1607-1613.	2.7	96
113	Disorder modification and photocatalytic activity enhancement of TiO2 nanocrystals through ultrasonic hydroxylation. Journal of Alloys and Compounds, 2017, 703, 96-102.	2.8	11
114	Periodically Aligned Dye Molecules Integrated in a Single MOF Microcrystal Exhibit Singleâ€Mode Linearly Polarized Lasing. Advanced Optical Materials, 2017, 5, 1601040.	3.6	27
115	Microporous Metal–Organic Framework with Exposed Amino Functional Group for High Acetylene Storage and Excellent C ₂ H ₂ /CO ₂ and C ₂ H ₂ /CH ₄ Separations. Crystal Growth and Design, 2017, 17, 2319-2322.	1.4	54
116	A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release. Microporous and Mesoporous Materials, 2017, 249, 55-60.	2.2	44
117	An amino-coordination metal–organic framework for highly selective C ₂ H ₂ /CH ₄ and C ₂ H _{/C₄ separations through the appropriate control of window sizes. RSC Advances. 2017. 7, 20795-20800.}	1.7	20
118	A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF. Dalton Transactions, 2017, 46, 7549-7555.	1.6	68
119	A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF. Journal of Materials Chemistry C, 2017, 5, 5044-5047.	2.7	78
120	A series of multifunctional coordination polymers based on terpyridine and zinc halide: second-harmonic generation and two-photon absorption properties and intracellular imaging. Journal of Materials Chemistry B, 2017, 5, 5458-5463.	2.9	31
121	A New Microporous Metalâ€Organic Framework for Highly Selective <scp>C₂H₂/(scp>/(scp)CH₄</scp> and <scp>C₂H₂/(scp)CO₂</scp> Separation at Room Temperature, Chinese Journal of Chemistry, 2017, 35, 1289-1293.	2.6	5
122	Highly sensitive and selective detection of mercury (II) based on a zirconium metal-organic framework in aqueous media. Journal of Solid State Chemistry, 2017, 253, 277-281.	1.4	57
123	A novel NbO-type metal-organic framework for highly separation of methane from C2-hydrocarbon at room temperature. Materials Letters, 2017, 196, 112-114.	1.3	15
124	Ultrasonic-induced disorder engineering on ZnO, ZrO ₂ , Fe ₂ O ₃ and SnO ₂ nanocrystals. RSC Advances, 2017, 7, 18785-18792.	1.7	18
125	A novel methoxy-decorated metal–organic framework exhibiting high acetylene and carbon dioxide storage capacities. CrystEngComm, 2017, 19, 1464-1469.	1.3	36
126	Highly Stable Mixed‣anthanide Metal–Organic Frameworks for Selfâ€Referencing and Colorimetric Luminescent pH Sensing. ChemNanoMat, 2017, 3, 51-57.	1.5	50

#	Article	IF	Citations
127	A Eu/Tb-mixed MOF for luminescent high-temperature sensing. Journal of Solid State Chemistry, 2017, 246, 341-345.	1.4	89
128	A luminescent cerium metal–organic framework for the turn-on sensing of ascorbic acid. Chemical Communications, 2017, 53, 11221-11224.	2.2	111
129	Thermal Stimuliâ€Triggered Drug Release from a Biocompatible Porous Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 10215-10221.	1.7	62
130	A novel Zn-based heterocycle metal-organic framework for high C2H2/C2H4, CO2/CH4 and CO2/N2 separations. Journal of Solid State Chemistry, 2017, 255, 102-107.	1.4	17
131	A turn-on fluorescent probe for Cd ²⁺ detection in aqueous environments based on an imine functionalized nanoscale metal–organic framework. RSC Advances, 2017, 7, 54892-54897.	1.7	38
132	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	11.1	310
133	A Twoâ€Photon Luminescent Dyeâ€Loaded Metal–Organic Framework for Physiological Temperature Sensing within Biological Windows. ChemPlusChem, 2017, 82, 1320-1325.	1.3	16
134	Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework. Journal of Solid State Chemistry, 2017, 245, 127-131.	1.4	28
135	Ultrasonic-induced nanocomposites with anatase@amorphous TiO2 core–shell structure and their photocatalytic activity. RSC Advances, 2016, 6, 67444-67448.	1.7	6
136	Low Cytotoxic Metal–Organic Frameworks as Temperatureâ€Responsive Drug Carriers. ChemPlusChem, 2016, 81, 804-810.	1.3	67
137	A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High C ₂ H ₂ Storage and Significantly Enhanced C ₂ H ₂ /CO ₂ Separation at Ambient Conditions. Inorganic Chemistry, 2016, 55, 7214-7218.	1.9	124
138	Pressure controlled drug release in a Zr-cluster-based MOF. Journal of Materials Chemistry B, 2016, 4, 6398-6401.	2.9	86
139	Encapsulation of coumarin dye within lanthanide MOFs as highly efficient white-light-emitting phosphors for white LEDs. CrystEngComm, 2016, 18, 8366-8371.	1.3	33
140	Low Cytotoxic Metal-Organic Frameworks as Temperature-Responsive Drug Carriers. ChemPlusChem, 2016, 81, 668-668.	1.3	10
141	Design and preparation of hybrid films containing three-branched chromophores for nonlinear optical applications. RSC Advances, 2016, 6, 81969-81975.	1.7	7
142	Enhanced photocatalytic performance and morphology evolvement of PbWO ₄ dendritic nanostructures through Eu ³⁺ doping. RSC Advances, 2016, 6, 81447-81453.	1.7	13
143	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
144	A Large Capacity Cationic Metal–Organic Framework Nanocarrier for Physiological pH Responsive Drug Delivery. Molecular Pharmaceutics, 2016, 13, 2782-2786.	2.3	85

#	Article	IF	CITATIONS
145	Turn-on and Ratiometric Luminescent Sensing of Hydrogen Sulfide Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 32259-32265.	4.0	207
146	A highly stable amino-coordinated MOF for unprecedented block off N $<$ sub $>$ 2 $<$ /sub $>$ adsorption and extraordinary CO $<$ sub $>$ 2 $<$ /sub $>$ 1 $<$ 8 $>$ 1 $>$ 2 $<$ 8 $>13568-13571.$	2.2	33
147	Doubly Interpenetrated Metal–Organic Framework for Highly Selective C ₂ H ₂ /CO ₂ Separation at Room Temperature. Crystal Growth and Design, 2016, 16, 7194-7197.	1.4	80
148	A dye encapsulated terbium-based metal–organic framework for ratiometric temperature sensing. Dalton Transactions, 2016, 45, 18689-18695.	1.6	57
149	A Terbium Metal–Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg ²⁺ Ions in Aqueous Solution. Chemistry - A European Journal, 2016, 22, 18429-18434.	1.7	121
150	Polarized three-photon-pumped laser in a single MOF microcrystal. Nature Communications, 2016, 7, 11087.	5.8	165
151	Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe ³⁺ . Journal of Materials Chemistry A, 2016, 4, 10900-10905.	5.2	412
152	A highly sensitive near-infrared luminescent metal–organic framework thermometer in the physiological range. Chemical Communications, 2016, 52, 8259-8262.	2.2	60
153	Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks. Journal of Solid State Chemistry, 2016, 241, 99-104.	1.4	23
154	A novel metal-organic framework for high storage and separation of acetylene at room temperature. Journal of Solid State Chemistry, 2016, 241, 152-156.	1.4	34
155	Sensing-functional luminescent metal–organic frameworks. CrystEngComm, 2016, 18, 3746-3759.	1.3	160
156	Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 2016, 49, 483-493.	7.6	1,403
157	A porphyrin-based metal–organic framework as a pH-responsive drug carrier. Journal of Solid State Chemistry, 2016, 237, 307-312.	1.4	93
158	Encapsulation of dyes in metal–organic frameworks and their tunable nonlinear optical properties. Dalton Transactions, 2016, 45, 4218-4223.	1.6	45
159	Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index. Advanced Functional Materials, 2015, 25, 4796-4802.	7.8	260
160	Microporous metal-organic frameworks with suitable pore spaces forÂacetylene storage and purification. Microporous and Mesoporous Materials, 2015, 215, 109-115.	2.2	23
161	Design and Synthesis of an MOF Thermometer with High Sensitivity in the Physiological Temperature Range. Inorganic Chemistry, 2015, 54, 11193-11199.	1.9	130
162	Preparation and Gas Separation Properties of Metalâ€Organic Framework Membranes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 792-796.	0.6	22

#	Article	IF	CITATIONS
163	Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films. Dyes and Pigments, 2015, 116, 114-118.	2.0	12
164	Dualâ€Emitting MOFâŠfDye Composite for Ratiometric Temperature Sensing. Advanced Materials, 2015, 27, 1420-1425.	11.1	604
165	Metal–organic frameworks for luminescence thermometry. Chemical Communications, 2015, 51, 7420-7431.	2.2	354
166	Postsynthetic modification of metal–organic framework for hydrogen sulfide detection. Applied Surface Science, 2015, 355, 814-819.	3.1	50
167	Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand. Journal of Solid State Chemistry, 2015, 230, 287-292.	1.4	21
168	Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Scientific Reports, 2015, 5, 11712.	1.6	133
169	A Noninterpenetrated Metal–Organic Framework Built from an Enlarged Tetracarboxylic Acid for Small Hydrocarbon Separation. Crystal Growth and Design, 2015, 15, 4071-4074.	1.4	21
170	Novel Microporous Metal–Organic Framework Exhibiting High Acetylene and Methane Storage Capacities. Inorganic Chemistry, 2015, 54, 4377-4381.	1.9	36
171	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	11.8	176
172	Direct Synthesis of Porous Nanorodâ€Type Graphitic Carbon Nitride/CuO Composite from Cu–Melamine Supramolecular Framework towards Enhanced Photocatalytic Performance. Chemistry - an Asian Journal, 2015, 10, 1276-1280.	1.7	131
173	Bowl-like sulfur particles wrapped by graphene oxide as cathode material of lithium–sulfur batteries. RSC Advances, 2015, 5, 28832-28835.	1.7	12
174	Two-Photon Responsive Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 4026-4029.	6.6	185
175	Synthesis of different CuO nanostructures from Cu(OH) < sub > 2 < /sub > nanorods through changing drying medium for lithium-ion battery anodes. RSC Advances, 2015, 5, 28611-28618.	1.7	26
176	Coordination-driven self-assembly: construction of a Fe ₃ O ₄ –graphene hybrid 3D framework and its long cycle lifetime for lithium-ion batteries. RSC Advances, 2015, 5, 40249-40257.	1.7	16
177	Mechanically tunable organic vertical-cavity surface emitting lasers (VCSELs) for highly sensitive stress probing in dual-modes. Optics Express, 2015, 23, 4385.	1.7	4
178	Carbonate-assisted hydrothermal synthesis of porous, hierarchical CuO microspheres and CuO/GO for high-performance lithium-ion battery anodes. RSC Advances, 2015, 5, 85179-85186.	1.7	19
179	A porous Zr-cluster-based cationic metal–organic framework for highly efficient Cr ₂ O ₇ ^{2â~'} removal from water. Chemical Communications, 2015, 51, 14732-14734.	2.2	234
180	White Light: Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4795-4795.	7.8	2

#	Article	IF	CITATIONS
181	Electrochemical properties of SnO ₂ nanoparticles immobilized within a metal–organic framework as an anode material for lithium-ion batteries. RSC Advances, 2015, 5, 84662-84665.	1.7	19
182	A near infrared luminescent metal–organic framework for temperature sensing in the physiological range. Chemical Communications, 2015, 51, 17676-17679.	2.2	126
183	A new NbO type metal–organic framework for high acetylene and methane storage. RSC Advances, 2015, 5, 84446-84450.	1.7	13
184	An amino-decorated NbO-type metal–organic framework for high C ₂ H ₂ storage and selective CO ₂ capture. RSC Advances, 2015, 5, 77417-77422.	1.7	53
185	Mixed-Metal–Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & 1, 20999-21004.	4.0	182
186	One-dimension TiO2 nanostructures: oriented attachment and application in dye-sensitized solar cell. CrystEngComm, 2014, 16, 1681.	1.3	16
187	Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coordination Chemistry Reviews, 2014, 273-274, 76-86.	9.5	937
188	Vertical-cavity surface-emitting laser in the long-wavelength (700Ânm) region in the visible by energy transfer between organic dyes. Applied Physics B: Lasers and Optics, 2014, 115, 583-588.	1.1	6
189	A new fluorescent probe for Zn ²⁺ with red emission and its application in bioimaging. Dalton Transactions, 2014, 43, 8048-8053.	1.6	37
190	A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. Journal of Materials Chemistry A, 2014, 2, 2628.	5. 2	91
191	A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chemical Communications, 2014, 50, 719-721.	2.2	192
192	Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. Journal of Materials Chemistry A, 2014, 2, 7912.	5 . 2	89
193	Shape―and Sizeâ€Controlled Synthesis of Mn ₃ O ₄ Nanocrystals at Room Temperature. European Journal of Inorganic Chemistry, 2014, 2014, 3023-3029.	1.0	10
194	Facile synthesis of graphene-supported mesoporous Mn3O4 nanosheets with a high-performance in Li-ion batteries. RSC Advances, 2014, 4, 5367.	1.7	30
195	A NbO type microporous metal–organic framework constructed from a naphthalene derived ligand for CH ₄ and C ₂ H ₂ storage at room temperature. RSC Advances, 2014, 4, 49457-49461.	1.7	23
196	Self-assembled hierarchical mesoporous TiO2–C sub-microspheres from nanorods and their improved properties for lithium storage. RSC Advances, 2014, 4, 19266.	1.7	8
197	Enhanced photocatalytic activity of hydroxylated and N-doped anatase derived from amorphous hydrate. Journal of Materials Chemistry A, 2014, 2, 16242-16249.	5 . 2	19
198	Porous anatase TiO ₂ constructed from a metalâ€"organic framework for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 12571.	5 . 2	153

#	Article	IF	CITATIONS
199	Methane storage in metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5657-5678.	18.7	1,449
200	Highly selective separation of small hydrocarbons and carbon dioxide in a metal–organic framework with open copper(ii) coordination sites. RSC Advances, 2014, 4, 23058.	1.7	35
201	Luminescent Metal–Organic Framework Films As Highly Sensitive and Fast-Response Oxygen Sensors. Journal of the American Chemical Society, 2014, 136, 5527-5530.	6.6	319
202	A new microporous metal–organic framework with open metal sites and exposed carboxylic acid groups for selective separation of CO ₂ /CH ₄ and C ₂ H ₂ /CH ₄ . RSC Advances, 2014, 4, 36419.	1.7	37
203	Controllable synthesis of TiO2hierarchical and their applications in lithium ion batteries. RSC Advances, 2014, 4, 42772-42778.	1.7	3
204	Fluorescent and laser properties of pyrromethene 567 (PM567) doped into multi-precursors derived gel glasses. Journal of Sol-Gel Science and Technology, 2013, 67, 480-485.	1.1	3
205	A fluorescent pH chemosensor for strongly acidic conditions based on the intramolecular charge transfer (ICT) effect. RSC Advances, 2013, 3, 4872.	1.7	35
206	A new fluorescent probe for distinguishing Zn2+ and Cd2+ with high sensitivity and selectivity. Dalton Transactions, 2013, 42, 11465.	1.6	58
207	Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions. Microporous and Mesoporous Materials, 2013, 179, 198-204.	2.2	38
208	Assembly and tunable luminescence of lanthanide-organic frameworks constructed from 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand. Journal of Alloys and Compounds, 2013, 551, 616-620.	2.8	23
209	Stackable spectral-sensitive conductive films based on cyanine aggregates via an inkjet method. Dyes and Pigments, 2013, 98, 333-338.	2.0	7
210	Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nature Communications, 2013, 4, 2719.	5.8	381
211	An ortho-methylated fluorescent chemosensor based on pyrromethene for highly selective and sensitive detection of Ag+ and Hg2+ ions. Materials Chemistry and Physics, 2013, 141, 591-595.	2.0	16
212	A cationic microporous metal–organic framework for highly selective separation of small hydrocarbons at room temperature. Journal of Materials Chemistry A, 2013, 1, 9916.	5. 2	83
213	A Highly Sensitive Mixed Lanthanide Metal–Organic Framework Self-Calibrated Luminescent Thermometer. Journal of the American Chemical Society, 2013, 135, 15559-15564.	6.6	608
214	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ gas separation at room temperature. Journal of Materials Chemistry A, 2013, 1, 77-81.	5. 2	148
215	A new fluorescent and colorimetric probe for trace hydrazine with a wide detection range in aqueous solution. Dyes and Pigments, 2013, 99, 966-971.	2.0	83
216	Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission. Dyes and Pigments, 2013, 97, 58-64.	2.0	41

#	Article	IF	CITATIONS
217	A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chemical Communications, 2013, 49, 2043.	2.2	61
218	Synthesis and luminescent properties of color-tunable lanthanide complexes with 5-(pyridin-4-yl)isophthalic acid. Journal of Alloys and Compounds, 2013, 555, 22-27.	2.8	6
219	A Doubly Interpenetrated Metal–Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. Crystal Growth and Design, 2013, 13, 2094-2097.	1.4	96
220	Spectral-resolving capable and integratable multilayered conductive films via an inkjet method. Journal of Materials Chemistry C, 2013, 1, 1739.	2.7	16
221	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chemical Communications, 2013, 49, 6719.	2.2	158
222	Energy transfer mechanisms among various laser dyes co-doped into gel glasses. Dyes and Pigments, 2013, 96, 242-248.	2.0	13
223	Three-dimensional copper (II) metal–organic framework with open metal sites and anthracene nucleus for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature. Microporous and Mesoporous Materials, 2013, 181, 99-104.	2.2	40
224	Synthesis, Structures and Luminescent Properties of Two Coordination Polymers Based on 5â€(4â€Carboxyphenyl)â€2, 6â€PyrÂidinedicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 430-434.	0.6	5
225	Self-curable solid-state elastic dye lasers capable of mechanical stress probing. Optics Letters, 2013, 38, 1627.	1.7	6
226	Two-Step Self-Assembly and Lyotropic Liquid Crystal Behavior of TiO _{2} Nanorods. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	6
227	A luminescent nanoscale metal–organic framework with controllable morphologies for spore detection. Chemical Communications, 2012, 48, 7377.	2.2	146
228	A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. Journal of the American Chemical Society, 2012, 134, 3979-3982.	6.6	1,033
229	Color-tunable and white-light emitting lanthanide complexes based on (CexEuyTb1â^'xâ^'y)2(BDC)3(H2O)4. Journal of Alloys and Compounds, 2012, 510, L5-L8.	2.8	32
230	Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metal–organic framework materials. Journal of Materials Chemistry, 2012, 22, 3210.	6.7	200
231	Six-branched chromophores with isolation groups: synthesis and enhanced optical nonlinearity. Journal of Materials Chemistry, 2012, 22, 9202.	6.7	25
232	Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 1126-1162.	23.0	5,099
233	A robust microporous metal–organic framework constructed from a flexible organic linker for highly selective sorption of methanol over ethanol and water. Journal of Materials Chemistry, 2012, 22, 10352.	6.7	18
234	Secondâ€Order Nonlinear Optical Activity Induced by Ordered Dipolar Chromophores Confined in the Pores of an Anionic Metal†Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 10542-10545.	7.2	279

#	Article	IF	Citations
235	Sensitized near-infrared luminescence from erbium ion-associated complex with IR140 dye. Dyes and Pigments, 2012, 95, 69-73.	2.0	4
236	A robust near infrared luminescent ytterbium metal–organic framework for sensing of small molecules. Chemical Communications, 2011, 47, 5551-5553.	2.2	345
237	Enhancement of nonlinear optical activity in new six-branched dendritic dipolar chromophore. Journal of Materials Chemistry, 2011, 21, 3197.	6.7	38
238	A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange. Chemical Communications, 2011, 47, 11715.	2.2	319
239	A novel 2,6-dicarbonylpyridine-based fluorescent chemosensor for Co2+ with high selectivity and sensitivity. Analyst, The, 2011, 136, 5283.	1.7	30
240	Shape Evolution of Highly Crystalline Anatase TiO ₂ Nanobipyramids. Crystal Growth and Design, 2011, 11, 5221-5226.	1.4	61
241	A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chemical Communications, 2011, 47, 3153.	2.2	426
242	A metal–organic framework for selectively sensing of PO43â^' anion in aqueous solution. Journal of Alloys and Compounds, 2011, 509, 2552-2554.	2.8	66
243	A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chemistry - A European Journal, 2011, 17, 7817-7822.	1.7	137
244	Synthesis of novel SnO2 quantum cubes and their selfassembly. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 269-272.	0.4	0
245	Metalâ^'Organic Frameworks with Functional Pores for Recognition of Small Molecules. Accounts of Chemical Research, 2010, 43, 1115-1124.	7.6	1,919
246	Hybrid inorganic-organic films with Benzaldehyde-based chromophore for electro-optic device. , 2010, , .		0
247	A luminescent nano-scale metal-organic framework for sensing small molecules. , 2010, , .		0
248	A Rare Uninodal 9-Connected Metalâ^'Organic Framework with Permanent Porosity. Crystal Growth and Design, 2010, 10, 2372-2375.	1.4	71
249	A Luminescent Metal–Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angewandte Chemie - International Edition, 2009, 48, 500-503.	7.2	1,041
250	Synthesis and luminescence behavior of inorganic–organic hybrid materials covalently bound with pyran-containing dyes. Journal of Sol-Gel Science and Technology, 2009, 52, 362-369.	1.1	16
251	Effect of pH values on photocatalytic properties of Bi2WO6 synthesized by hydrothermal method. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 533-536.	0.4	12
252	Sonochemical synthesis of core/Shell structured CdS/TiO2 nanocrystals composites. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 698-701.	0.4	4

#	Article	IF	Citations
253	Molecular sensing with lanthanide luminescence in a 3D porous metal-organic framework. Journal of Alloys and Compounds, 2009, 484, 601-604.	2.8	77
254	Effect of pendant group on the second-order optical nonlinearity of sol–gel films. Journal of Sol-Gel Science and Technology, 2008, 47, 252-259.	1.1	1
255	A Luminescent Microporous Metalâ^'Organic Framework for the Recognition and Sensing of Anions. Journal of the American Chemical Society, 2008, 130, 6718-6719.	6.6	962
256	Hybrid Nonlinear Optical Materials Containing Imidazole Chromophore through the Solâ€Gel Process. Macromolecular Rapid Communications, 2007, 28, 2019-2023.	2.0	21
257	Dipolar orientation stabilities of hybrid films for second-order nonlinear optical applications. Journal of Sol-Gel Science and Technology, 2007, 43, 329-335.	1.1	7
258	Amplified spontaneous emission from an infrared dye doped zirconia-organically modified silicate thin film waveguides. Journal of Sol-Gel Science and Technology, 2007, 44, 53-57.	1.1	6
259	Enhanced Near-Infraredâ^'Luminescence in an Erbium Tetrafluoroterephthalate Framework. Inorganic Chemistry, 2006, 45, 8882-8886.	1.9	233
260	Hybrid Organic-Inorganic Solid-State Dye Laser Glasses. , 2006, , 261-298.		0
261	Energy transfer mechanism between laser dyes doped in ORMOSILs. Chemical Physics Letters, 2005, 402, 389-394.	1.2	35
262	Refractive Index Adjustment of SiO2 Gel Glass with Zirconium Oxychloride. Journal of Sol-Gel Science and Technology, 2005, 33, 169-173.	1.1	11
263	Temperature-dependent luminescent properties of Eu–Tb complexes synthesized in situ in gel glass. Applied Physics Letters, 2005, 86, 071907.	1.5	48
264	Laser properties and photostabilities of laser dyes doped in ORMOSILs. Optical Materials, 2004, 24, 621-628.	1.7	94
265	Enhanced Luminescence of an Erbium (III) Ion-Association Ternary Complex with a Near-Infrared Dye. Journal of Physical Chemistry B, 2004, 108, 8084-8088.	1.2	33
266	Influence of the thickness and composition of the solid-state dye laser media on the laser properties. Optics Communications, 2002, 204, 277-282.	1.0	34
267	Time-resolved spectroscopic study of Eu(TTA)3(TPPO)2 chelate in situ synthesized in vinyltriethoxysilane-derived sol–gel-processed glass. Journal of Luminescence, 2002, 96, 211-218.	1.5	25
268	In situ synthesis and photophysical properties of the Eu(TTA) 3 Dipy complex in vinyltriethoxysilane-derived gel glass. Journal of Physics and Chemistry of Solids, 2002, 63, 1829-1834.	1.9	24
269	Title is missing!. Journal of Fluorescence, 2002, 12, 377-382.	1.3	1
270	In-situ Synthesis of Copper Phthalocyanine in Silica Xerogel Matrix. Journal of Sol-Gel Science and Technology, 2000, 18, 21-27.	1.1	3

#	Article	IF	CITATIONS
271	Synthesis <i>In Situ</i> , Characterization, and Photostability of Europium βâ€Diketone Chelates in Organically Modified Silicates (ORMOSILs). Journal of the American Ceramic Society, 2000, 83, 703-708.	1.9	39
272	Dense Packing of Acetylene in a Stable and Lowâ€Cost Metal–Organic Framework for Efficient C2H2/CO2 Separation. Angewandte Chemie, 0, , .	1.6	14