Christoph Ruckenstuhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10208364/publications.pdf

Version: 2024-02-01

172457 214800 7,158 48 29 citations h-index papers

g-index 49 49 49 12163 docs citations times ranked citing authors all docs

47

#	Article	IF	CITATIONS
1	A hundred spotlights on microbiology: how microorganisms shape our lives. Microbial Cell, 2022, 9, 72-79.	3.2	2
2	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 7	02 Td (editior 1,430
3	Murals meet microbes: at the crossroads of microbiology and cultural heritage. Microbial Cell, 2021, 8, 276-279.	3.2	1
4	Acyl-CoA-binding protein (ACBP): a phylogenetically conserved appetite stimulator. Cell Death and Disease, 2020, 11, 7.	6.3	34
5	4,4'Dimethoxychalcone: a natural flavonoid that promotes health through autophagy-dependent and -independent effects. Autophagy, 2019, 15, 1662-1664.	9.1	8
6	Targeting GATA transcription factors – a novel strategy for anti-aging interventions?. Microbial Cell, 2019, 6, 212-216.	3.2	6
7	Acetyl-CoA carboxylase 1–dependent lipogenesis promotes autophagy downstream of AMPK. Journal of Biological Chemistry, 2019, 294, 12020-12039.	3.4	29
8	The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nature Communications, 2019, 10, 651.	12.8	100
9	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
10	Higher spermidine intake is linked to lower mortality: a prospective population-based study. American Journal of Clinical Nutrition, 2018, 108, 371-380.	4.7	150
11	Dietary spermidine for lowering high blood pressure. Autophagy, 2017, 13, 767-769.	9.1	63
12	Methods to Assess Autophagy and Chronological Aging in Yeast. Methods in Enzymology, 2017, 588, 367-394.	1.0	20
13	The neuroprotective steroid progesterone promotes mitochondrial uncoupling, reduces cytosolic calcium and augments stress resistance in yeast cells. Microbial Cell, 2017, 4, 191-199.	3.2	10
14	Cell Stress – a new journal for cellular pathophysiology. Cell Stress, 2017, 1, 1-3.	3.2	0
15	The crucial impact of lysosomes in aging and longevity. Ageing Research Reviews, 2016, 32, 2-12.	10.9	200
16	Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature Medicine, 2016, 22, 1428-1438.	30.7	801
17	Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits. Cell, 2015, 160, 132-144.	28.9	449
18	Metabolites in aging and autophagy. Microbial Cell, 2014, 1, 110-114.	3.2	15

#	Article	IF	Citations
19	Acetyl-coenzyme A. Autophagy, 2014, 10, 1335-1337.	9.1	42
20	Lifespan Extension by Methionine Restriction Requires Autophagy-Dependent Vacuolar Acidification. PLoS Genetics, 2014, 10, e1004347.	3.5	192
21	Methionine restriction slows down senescence in human diploid fibroblasts. Aging Cell, 2014, 13, 1038-1048.	6.7	47
22	Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan. Cell Metabolism, 2014, 19, 431-444.	16.2	221
23	Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death and Differentiation, 2014, 21, 59-68.	11.2	83
24	Autophagy extends lifespan via vacuolar acidification. Microbial Cell, 2014, 1, 160-162.	3.2	13
25	Spermidine promotes mating and fertilization efficiency in model organisms. Cell Cycle, 2013, 12, 346-352.	2.6	29
26	Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease. EMBO Journal, 2013, 32, 3041-3054.	7.8	71
27	The cell death protease Kex1p is essential for hypochlorite-induced apoptosis in yeast. Cell Cycle, 2013, 12, 1704-1712.	2.6	23
28	An Immunosurveillance Mechanism Controls Cancer Cell Ploidy. Science, 2012, 337, 1678-1684.	12.6	367
29	The yeast metacaspase is implicated in oxidative stress response in frataxinâ€deficient cells. FEBS Letters, 2012, 586, 143-148.	2.8	16
30	The metabolism beyond programmed cell death in yeast. Experimental Cell Research, 2012, 318, 1193-1200.	2.6	22
31	Ceramide triggers metacaspase-independent mitochondrial cell death in yeast. Cell Cycle, 2011, 10, 3973-3978.	2.6	40
32	The propeptide of yeast cathepsin D inhibits programmed necrosis. Cell Death and Disease, 2011, 2, e161-e161.	6.3	55
33	p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle, 2011, 10, 2763-2769.	2.6	131
34	Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell, 2010, 9, 1084-1097.	6.7	57
35	Cell death in yeast: growing applications of a dying buddy. Cell Death and Differentiation, 2010, 17, 733-734.	11.2	36
36	Spermidine: A novel autophagy inducer and longevity elixir. Autophagy, 2010, 6, 160-162.	9.1	147

#	Article	IF	Citations
37	The sweet taste of death: glucose triggers apoptosis during yeast chronological aging. Aging, 2010, 2, 643-649.	3.1	23
38	The Warburg Effect Suppresses Oxidative Stress Induced Apoptosis in a Yeast Model for Cancer. PLoS ONE, 2009, 4, e4592.	2.5	96
39	Vacuolar functions determine the mode of cell death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 540-545.	4.1	30
40	Induction of autophagy by spermidine promotes longevity. Nature Cell Biology, 2009, 11, 1305-1314.	10.3	1,302
41	Structure-Function Correlations of Two Highly Conserved Motifs in <i>Saccharomyces cerevisiae</i> Squalene Epoxidase. Antimicrobial Agents and Chemotherapy, 2008, 52, 1496-1499.	3.2	6
42	Endonuclease G Regulates Budding Yeast Life and Death. Molecular Cell, 2007, 25, 233-246.	9.7	305
43	Characterization of Squalene Epoxidase of Saccharomyces cerevisiae by Applying Terbinafine-Sensitive Variants. Antimicrobial Agents and Chemotherapy, 2007, 51, 275-284.	3.2	36
44	Yeast apoptosisâ€"From genes to pathways. Seminars in Cancer Biology, 2007, 17, 112-121.	9.6	76
45	Single amino acid exchanges in FAD-binding domains of squalene epoxidase of <i>Saccharomyces cerevisiae</i> lead to either loss of functionality or terbinafine sensitivity. Biochemical Society Transactions, 2005, 33, 1197-1201.	3.4	17
46	Characterizing Sterol Defect Suppressors Uncovers a Novel Transcriptional Signaling Pathway Regulating Zymosterol Biosynthesis. Journal of Biological Chemistry, 2005, 280, 35904-35913.	3.4	29
47	Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology (United Kingdom), 2005, 151, 3455-3467.	1.8	107
48	Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy, 2003, 47, 3890-3900.	3.2	62