## Cesare Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10198364/publications.pdf Version: 2024-02-01



CESADE POSSI

| #  | Article                                                                                                                                                                                                                                                   | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Sudden Unexpected Death after a mild trauma: The complex forensic interpretation of cardiac and genetic findings. Forensic Science International, 2021, 328, 111004.                                                                                      | 2.2 | 2         |
| 2  | Clinical histopathological features and CDKN2A/CDK4/MITF mutational status of patients with<br>multiple primary melanomas from Bologna: Italy is a fascinating but complex mosaic. Italian Journal of<br>Dermatology and Venereology, 2021, 156, 599-605. | 0.2 | 3         |
| 3  | SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. American Journal of<br>Human Genetics, 2021, 108, 2112-2129.                                                                                                                   | 6.2 | 23        |
| 4  | Clinical histopathological features and CDKN2A/CDK4/MITF mutational status of patients with<br>multiple primary melanomas from Bologna: Italy is a fascinating but complex mosaic. Italian Journal of<br>Dermatology and Venereology, 2021, 156, .        | 0.2 | 4         |
| 5  | Postmortem diagnosis of left dominant arrhythmogenic cardiomyopathy: the importance of a<br>multidisciplinary network for sudden death victims. "HIC mors gaudet succurere vitae―<br>Cardiovascular Pathology, 2020, 44, 107157.                          | 1.6 | 4         |
| 6  | Results and Clinical Interpretation of Germline RET Analysis in a Series of Patients with Medullary<br>Thyroid Carcinoma: The Challenge of the Variants of Uncertain Significance. Cancers, 2020, 12, 3268.                                               | 3.7 | 2         |
| 7  | Enhanced MAPK1 Function Causes a Neurodevelopmental Disorder within the RASopathy Clinical Spectrum. American Journal of Human Genetics, 2020, 107, 499-513.                                                                                              | 6.2 | 48        |
| 8  | A case series of CHARGE syndrome: identification of key features for a neonatal diagnosis. Italian<br>Journal of Pediatrics, 2020, 46, 53.                                                                                                                | 2.6 | 6         |
| 9  | The Relevance of Family History Taking in the Detection and Management of Birt-Hogg-Dubé Syndrome.<br>Respiration, 2019, 98, 125-132.                                                                                                                     | 2.6 | 7         |
| 10 | Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. American Journal of<br>Human Genetics, 2018, 102, 309-320.                                                                                                                     | 6.2 | 138       |
| 11 | Structural, Functional, and Clinical Characterization of a Novel <i>PTPN11</i> Mutation Cluster<br>Underlying Noonan Syndrome. Human Mutation, 2017, 38, 451-459.                                                                                         | 2.5 | 39        |
| 12 | A <i>de novo PUF60</i> mutation in a child with a syndromic form of coloboma and persistent fetal vasculature. Ophthalmic Genetics, 2017, 38, 590-592.                                                                                                    | 1.2 | 16        |
| 13 | Search for genetic factors in bicuspid aortic valve disease: ACTA2 mutations do not play a major role.<br>Interactive Cardiovascular and Thoracic Surgery, 2017, 25, 813-817.                                                                             | 1.1 | 4         |
| 14 | Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome. Human<br>Mutation, 2015, 36, 1080-1087.                                                                                                                             | 2.5 | 67        |
| 15 | Response to longâ€ŧerm growth hormone therapy in patients affected by RASopathies and growth<br>hormone deficiency: Patterns of growth, puberty and final height data. American Journal of Medical<br>Genetics, Part A, 2015, 167, 2786-2794.             | 1.2 | 32        |
| 16 | Noonan syndromeâ€like disorder with loose anagen hair: A second case with neuroblastoma. American<br>Journal of Medical Genetics, Part A, 2015, 167, 1902-1907.                                                                                           | 1.2 | 14        |
| 17 | Usher syndrome: An effective sequencing approach to establish a genetic and clinical diagnosis.<br>Hearing Research, 2015, 320, 18-23.                                                                                                                    | 2.0 | 26        |
| 18 | From clinical suspect to molecular confirmation of noonan syndrome; contribution of "best practice―genetic counseling and new technical possibilities. Genetika, 2015, 47, 877-884.                                                                       | 0.4 | 0         |

| #  | Article                                                                                                                                                                                         | IF                | CITATIONS            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 19 | Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Human Molecular Genetics, 2014, 23, 4315-4327.                               | 2.9               | 114                  |
| 20 | Hydrops fetalis in a preterm newborn heterozygous for the c.4A>G <i>SHOC2</i> mutation.<br>American Journal of Medical Genetics, Part A, 2014, 164, 1015-1020.                                  | 1.2               | 21                   |
| 21 | Phenotypic variability associated with the invariant <i>SHOC2</i> c.4A>G (p.Ser2Gly) missense mutation. American Journal of Medical Genetics, Part A, 2014, 164, 3120-3125.                     | 1.2               | 20                   |
| 22 | GH Therapy and first final height data in Noonanâ€ <b>i</b> ke syndrome with loose anagen hair (Mazzanti) Tj ETQqO 0 (                                                                          | ) rgBT /Ov<br>1.2 | erlock 10 Tf 5<br>14 |
| 23 | Functional evaluation of circulating hematopoietic progenitors in Noonan syndrome. Oncology<br>Reports, 2013, 30, 553-559.                                                                      | 2.6               | 9                    |
| 24 | Loss of <scp>CBL</scp> E3â€ligase activity in Bâ€lineage childhood acute lymphoblastic leukaemia. British<br>Journal of Haematology, 2012, 159, 115-119.                                        | 2.5               | 6                    |
| 25 | Transcriptional hallmarks of noonan syndrome and noonanâ€like syndrome with loose anagen hair.<br>Human Mutation, 2012, 33, 703-709.                                                            | 2.5               | 12                   |
| 26 | Prenatal features of Noonan syndrome: prevalence and prognostic value. Prenatal Diagnosis, 2011, 31,<br>949-954.                                                                                | 2.3               | 43                   |
| 27 | SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Human Mutation, 2011, 32, 760-772.                       | 2.5               | 97                   |
| 28 | Occurrence of complete arhinia in two siblings with a clinical picture of Treacher Collins syndrome negative for TCOF1, POLR1D and POLR1C mutations. Clinical Dysmorphology, 2011, 20, 229-231. | 0.3               | 7                    |
| 29 | Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like<br>Phenotype. American Journal of Human Genetics, 2010, 87, 250-257.                              | 6.2               | 221                  |
| 30 | A restricted spectrum of NRAS mutations causes Noonan syndrome. Nature Genetics, 2010, 42, 27-29.                                                                                               | 21.4              | 271                  |
| 31 | Germline <i>BRAF</i> mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: Molecular diversity and associated phenotypic spectrum. Human Mutation, 2009, 30, 695-702.               | 2.5               | 251                  |
| 32 | Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nature Genetics, 2009, 41, 1022-1026.                                      | 21.4              | 358                  |
| 33 | Clinical and molecular characterization of 40 patients with Noonan syndrome. European Journal of Medical Genetics, 2008, 51, 566-572.                                                           | 1.3               | 45                   |
| 34 | Mutations of the Igβ gene cause agammaglobulinemia in man. Journal of Experimental Medicine, 2007, 204, 2047-2051.                                                                              | 8.5               | 87                   |
| 35 | Simple Method for Haplotyping the Poly(TC) Repeat in Individuals Carrying the IVS8 5T Allele in the CFTR Gene. Clinical Chemistry, 2007, 53, 531-533.                                           | 3.2               | 12                   |
| 36 | Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 2007, 39, 1007-1012.                                                      | 21.4              | 624                  |

CESARE ROSSI

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular analysis of the pre-BCR complex in a large cohort of patients affected by autosomal-recessive agammaglobulinemia. Genes and Immunity, 2007, 8, 325-333.                                      | 4.1 | 42        |
| 38 | Psychological consequences of prenatal diagnosis in a case of familial Angelman Syndrome. Prenatal<br>Diagnosis, 2006, 26, 1156-1159.                                                                  | 2.3 | 2         |
| 39 | Molecular and Biological Characterization of Deformed Wing Virus of Honeybees ( Apis mellifera L.).<br>Journal of Virology, 2006, 80, 4998-5009.                                                       | 3.4 | 270       |
| 40 | Lagovirus. , 2002, , 176-179.                                                                                                                                                                          |     | 0         |
| 41 | Detection of rabbit haemorrhagic disease virus (RHDV) by in situ hybridisation with a digoxigenin<br>labelled RNA probe. Journal of Virological Methods, 1998, 72, 219-226.                            | 2.1 | 27        |
| 42 | Detection and preliminary characterization of a new rabbit calicivirus related to rabbit hemorrhagic disease virus but nonpathogenic. Journal of Virology, 1996, 70, 8614-8623.                        | 3.4 | 177       |
| 43 | Antigenicity of the rabbit hemorrhagic disease virus studied by its reactivity with monoclonal antibodies. Virus Research, 1995, 37, 221-238.                                                          | 2.2 | 95        |
| 44 | 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity. Journal of Virology, 1995, 69, 7159-7168.         | 3.4 | 80        |
| 45 | Two independent pathways of expression lead to self-assembly of the rabbit hemorrhagic disease virus<br>capsid protein. Journal of Virology, 1995, 69, 5812-5815.                                      | 3.4 | 43        |
| 46 | Detection and identification of Leptospira interrogans serovars by PCR coupled with restriction endonuclease analysis of amplified DNA. Journal of Clinical Microbiology, 1994, 32, 935-941.           | 3.9 | 40        |
| 47 | Identification and characterization of a 3C-like protease from rabbit hemorrhagic disease virus, a calicivirus. Journal of Virology, 1994, 68, 6487-6495.                                              | 3.4 | 85        |
| 48 | Haemorrhagic disease of lagomorphs: evidence for a calicivirus. Veterinary Microbiology, 1992, 33, 375-381.                                                                                            | 1.9 | 38        |
| 49 | Repetitive sequences cloned from Leptospira interrogans serovar hardjo genotype hardjoprajitno and their application to serovar identification. Journal of Clinical Microbiology, 1992, 30, 1243-1249. | 3.9 | 34        |
| 50 | Drug synergism or antagonism in the induction of diploid meiotic products in Saccharomyces cerevisiae. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1984, 141, 161-164.      | 1.1 | 9         |