Chenxu Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. Journal of the American Chemical Society, 2019, 141, 3171-3177.	13.7	341
2	Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring. Advanced Energy Materials, 2019, 9, 1803573.	19.5	232
3	An enzyme-activatable probe liberating AlEgens: on-site sensing and long-term tracking of β-galactosidase in ovarian cancer cells. Chemical Science, 2019, 10, 398-405.	7.4	146
4	Highâ€Performance Quinolineâ€Malononitrile Core as a Building Block for the Diversityâ€Oriented Synthesis of AlEgens. Angewandte Chemie - International Edition, 2020, 59, 9812-9825.	13.8	134
5	Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews, 2021, 427, 213556.	18.8	120
6	A Sequential Dualâ€Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angewandte Chemie - International Edition, 2020, 59, 9059-9066.	13.8	92
7	In Situ Ratiometric Quantitative Tracing of Intracellular Leucine Aminopeptidase Activity via an Activatable Near-Infrared Fluorescent Probe. ACS Applied Materials & Interfaces, 2016, 8, 26622-26629.	8.0	85
8	Molecularly precise self-assembly of theranostic nanoprobes within a single-molecular framework for <i>in vivo</i> tracking of tumor-specific chemotherapy. Chemical Science, 2018, 9, 4959-4969.	7.4	81
9	A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release. Chemical Science, 2018, 9, 6176-6182.	7.4	76
10	De novo strategy with engineering anti-Kasha/Kasha fluorophores enables reliable ratiometric quantification of biomolecules. Nature Communications, 2020, 11, 793.	12.8	74
11	Highâ€Fidelity Trapping of Spatial–Temporal Mitochondria with Rational Design of Aggregationâ€Induced Emission Probes. Advanced Functional Materials, 2019, 29, 1808153.	14.9	73
12	Circularly Polarized Fluorescence Resonance Energy Transfer (<i>C</i> â€FRET) for Efficient Chirality Transmission within an Intermolecular System. Angewandte Chemie - International Edition, 2021, 60, 24549-24557.	13.8	72
13	Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications. Chemical Science, 2021, 12, 9885-9894.	7.4	60
14	Photocaged prodrug under NIR light-triggering with dual-channel fluorescence: in vivo real-time tracking for precise drug delivery. Science China Chemistry, 2018, 61, 1293-1300.	8.2	59
15	Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy. Chinese Chemical Letters, 2019, 30, 1849-1855.	9.0	59
16	Selfâ€Assembly of a Monochromophoreâ€Based Polymer Enables Unprecedented Ratiometric Tracing of Hypoxia. Advanced Materials, 2019, 31, e1805735.	21.0	57
17	Spatioâ€Temporally Reporting Doseâ€Dependent Chemotherapy via Uniting Dualâ€Modal MRI/NIR Imaging. Angewandte Chemie - International Edition, 2020, 59, 21143-21150.	13.8	51
18	Fluorescence umpolung enables light-up sensing of N-acetyltransferases and nerve agents. Nature Communications, 2021, 12, 3869.	12.8	51

CHENXU YAN

#	Article	IF	CITATIONS
19	NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated TÂcells. Cell Reports, 2021, 36, 109516.	6.4	50
20	<i>In vivo</i> ratiometric tracking of endogenous l²-galactosidase activity using an activatable near-infrared fluorescent probe. Chemical Communications, 2019, 55, 12308-12311.	4.1	48
21	Near-Infrared Aggregation-Induced Emission-Active Probe Enables in situ and Long-Term Tracking of Endogenous β-Galactosidase Activity. Frontiers in Chemistry, 2019, 7, 291.	3.6	46
22	Rational Design of Ratiometric Near-Infrared Aza-BODIPY-Based Fluorescent Probe for <i>in Vivo</i> Imaging of Endogenous Hydrogen Peroxide. ACS Applied Bio Materials, 2020, 3, 45-52.	4.6	42
23	Dual-channel near-infrared fluorescent probe for real-time tracking of endogenous γ-glutamyl transpeptidase activity. Chemical Communications, 2018, 54, 12393-12396.	4.1	31
24	Ratiometric and light-up near-infrared fluorescent DCM-based probe for real-time monitoring endogenous tyrosinase activity. Dyes and Pigments, 2019, 162, 802-807.	3.7	28
25	Harnessing Hypoxiaâ€Đependent Cyanine Photocages for Inâ€Vivo Precision Drug Release. Angewandte Chemie - International Edition, 2021, 60, 9553-9561.	13.8	28
26	Rational Design of Near-Infrared Cyanine-Based Fluorescent Probes for Rapid In Vivo Sensing Cysteine. ACS Applied Bio Materials, 2021, 4, 2001-2008.	4.6	27
27	Harnessing α- <scp>l</scp> -fucosidase for <i>in vivo</i> cellular senescence imaging. Chemical Science, 2021, 12, 10054-10062.	7.4	25
28	Saponin-Based Near-Infrared Nanoparticles with Aggregation-Induced Emission Behavior: Enhancing Cell Compatibility and Permeability. ACS Applied Bio Materials, 2019, 2, 943-951.	4.6	20
29	A Sequential Dual‣ock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angewandte Chemie, 2020, 132, 9144-9151.	2.0	20
30	<i>In vivo</i> real-time tracking of tumor-specific biocatalysis in cascade nanotheranostics enables synergistic cancer treatment. Chemical Science, 2020, 11, 3371-3377.	7.4	17
31	Circularly Polarized Fluorescence Resonance Energy Transfer (<i>C</i> â€FRET) for Efficient Chirality Transmission within an Intermolecular System. Angewandte Chemie, 2021, 133, 24754-24762.	2.0	17
32	Photocontrollable Release with Coumarin-Based Profragrances. ACS Applied Bio Materials, 2019, 2, 4002-4009.	4.6	16
33	Highâ€Performance Quinolineâ€Malononitrile Core as a Building Block for the Diversityâ€Oriented Synthesis of AlEgens. Angewandte Chemie, 2020, 132, 9896-9909.	2.0	15
34	Monitoring Autophagy with Atg4B Proteaseâ€Activated Aggregationâ€Induced Emission Probe. Advanced Functional Materials, 2022, 32, 2108571.	14.9	14
35	Engineering molecular self-assembly of theranostic nanoprobes for dual-modal imaging-guided precise chemotherapy. Science China Chemistry, 2021, 64, 2045-2052.	8.2	10
36	"Crossbreeding―Small-Molecular Weight NIR-II Flavchromenes Endows Activatable Multiplexed In		9

Vivo Imaging. , 2022, 4, 1493-1502.

Chenxu Yan

#	Article	IF	CITATIONS
37	Sequence-Activated Fluorescent Nanotheranostics for Real-Time Profiling Pancreatic Cancer. Jacs Au, 2022, 2, 246-257.	7.9	8
38	Spatioâ€Temporally Reporting Doseâ€Dependent Chemotherapy via Uniting Dualâ€Modal MRI/NIR Imaging. Angewandte Chemie, 2020, 132, 21329-21336.	2.0	6
39	Engineering photo-controllable fragrance release with flash nanoprecipitation. Green Chemical Engineering, 2021, 2, 301-308.	6.3	6
40	POSS: A Morphology-Tuning Strategy To Improve the Sensitivity and Responsiveness of Dissolved Oxygen Sensor. Industrial & Engineering Chemistry Research, 2019, 58, 7761-7768.	3.7	5
41	Harnessing Hypoxiaâ€Dependent Cyanine Photocages for Inâ€Vivo Precision Drug Release. Angewandte Chemie, 2021, 133, 9639-9647.	2.0	3
42	Quantitative and systematic designing of fluorophores enables ultrasensitive distinguishing carbonyls . New Journal of Chemistry, 2021, 45, 12661-12668.	2.8	3
43	Isopropyl-naphthylamide-hydrazine as a novel fluorescent reagent for ultrasensitive determination of carbonyl species on UPLC. Microchemical Journal, 2022, 177, 107308.	4.5	0