Miroslava Lehotska Mikusova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10197341/publications.pdf Version: 2024-02-01

Miroslava Lehotska

#	Article	IF	CITATIONS
1	Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis, 2003, 25, 757-763.	2.8	218
2	Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?. Food and Chemical Toxicology, 2017, 109, 797-811.	3.6	108
3	Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology, 2015, 9, 44-56.	3.0	81
4	Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST. Nanotoxicology, 2015, 9, 118-132.	3.0	75
5	Markers of individual susceptibility and DNA repair rate in workers exposed to xenobiotics in a tire plant. Environmental and Molecular Mutagenesis, 2004, 44, 283-292.	2.2	73
6	Cytogenetic markers, DNA single-strand breaks, urinary metabolites, and DNA repair rates in styrene-exposed lamination workers Environmental Health Perspectives, 2004, 112, 867-871.	6.0	70
7	Ninety-day oral toxicity studies on two genetically modified maize MON810 varieties in Wistar Han RCC rats (EU 7th Framework Programme project GRACE). Archives of Toxicology, 2014, 88, 2289-2314.	4.2	55
8	Lack of adverse effects in subchronic and chronic toxicity/carcinogenicity studies on the glyphosate-resistant genetically modified maize NK603 in Wistar Han RCC rats. Archives of Toxicology, 2019, 93, 1095-1139.	4.2	40
9	Relationship between the capacity to repair 8-oxoguanine, biomarkers of genotoxicity and individual susceptibility in styrene-exposed workers. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 634, 101-111.	1.7	33
10	One-year oral toxicity study on a genetically modified maize MON810 variety in Wistar Han RCC rats (EU 7th Framework Programme project GRACE). Archives of Toxicology, 2016, 90, 2531-2562.	4.2	33
11	Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model. Nanotoxicology, 2015, 9, 33-43.	3.0	30
12	The role of various biomarkers in the evaluation of styrene genotoxicity. Cancer Detection and Prevention, 2003, 27, 275-284.	2.1	28
13	Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicology and Applied Pharmacology, 2010, 248, 194-200.	2.8	23
14	Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Frontiers in Immunology, 2022, 13, 874253.	4.8	23
15	New aspects in the biomonitoring of occupational exposure to styrene. International Archives of Occupational and Environmental Health, 2002, 75, 75-85.	2.3	21
16	Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology, 2019, 13, 510-526.	3.0	17
17	Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity. Croatian Medical Journal, 2016, 57, 165-178.	0.7	16
18	Hydrophobic sodium fluorideâ€based nanocrystals doped with lanthanide ions: assessment of <i>in vitro</i> toxicity to human blood lymphocytes and phagocytes. Journal of Applied Toxicology, 2014, 34, 1220-1225.	2.8	12

Miroslava Lehotska

#	Article	IF	CITATIONS
19	Impact of interleukin 13 (<i>IL13</i>) genetic polymorphism Arg130Cln on total serum immunoglobulin (IgE) levels and interferon (IFN)-Î ³ gene expression. Clinical and Experimental Immunology, 2017, 188, 45-52.	2.6	12
20	Humoral and cellular immune response in Wistar Han RCC rats fed two genetically modified maize MON810 varieties for 90Âdays (EU 7th Framework Programme project GRACE). Archives of Toxicology, 2018, 92, 2385-2399.	4.2	12
21	Six-week inhalation of CdO nanoparticles in mice: The effects on immune response, oxidative stress, antioxidative defense, fibrotic response, and bones. Food and Chemical Toxicology, 2020, 136, 110954.	3.6	11
22	Consumption of a dark roast coffee blend reduces DNA damage in humans: results from a 4-week randomised controlled study. European Journal of Nutrition, 2019, 58, 3199-3206.	3.9	8
23	An In Vitro Study of the Toxic Effects of Stachybotrys chartarum Metabolites on Lung Cells. ATLA Alternatives To Laboratory Animals, 2007, 35, 47-52.	1.0	5
24	Six-week inhalation of lead oxide nanoparticles in mice affects antioxidant defense, immune response, kidneys, intestine and bones. Environmental Science: Nano, 2022, 9, 751-766.	4.3	4
25	The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes. Journal of Nanoparticle Research, 2017, 19, 68.	1.9	3
26	Immunotoxic and cancerostatic effects of ethyl-4-isothiocyanatobutanoate in female Lewis rats with implanted fibrosarcoma. International Immunopharmacology, 2002, 2, 1681-1691.	3.8	2
27	Toxicity of the Airborne Brake Wear Debris. SAE International Journal of Materials and Manufacturing, 0, 10, 19-25.	0.3	2
28	Allergenicity testing of supermethrin, phenoxyacetic acid and DNCB usingin vivo andin vitro modifications of the local lymph node assays, maximization and epicutaneous testing. Journal of Applied Toxicology, 2001, 21, 257-262.	2.8	1
29	In vitrotoxicity of indoor fungi from dwellings in Slovakia: testing on the isolated lung cells. , 2008, ,		1