Peter J Eng ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/10197219/publications.pdf Version: 2024-02-01 | 138 | 6,595 | 38 | 77 | |----------|----------------|--------------|---------------------| | papers | citations | h-index | g-index | | 145 | 145 | 145 | 6671 citing authors | | all docs | docs citations | times ranked | | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | A multi-faceted experimental study on the dynamic behavior of MgSiO3 glass in the Earth's deep interior. American Mineralogist, 2022, 107, 1313-1324. | 1.9 | 2 | | 2 | Impact of Ion–Ion Correlations on the Adsorption of M(III) (M = Am, Eu, Y) onto Muscovite (001) in the Presence of Sulfate. Journal of Physical Chemistry C, 2022, 126, 1400-1410. | 3.1 | 3 | | 3 | Recent developments on high-pressure single-crystal X-ray diffraction at the Partnership for eXtreme Xtallography (PX2) program. Physics and Chemistry of Minerals, 2022, 49, . | 0.8 | 3 | | 4 | Hematite-goethite ratios at pHÂ2–13 and 25–170°C: A time-resolved synchrotron X-ray diffraction study. Chemical Geology, 2022, 606, 120995. | 3.3 | 8 | | 5 | Effect of Background Electrolyte Composition on the Interfacial Formation of Th(IV) Nanoparticles on the Muscovite (001) Basal Plane. Journal of Physical Chemistry C, 2021, 125, 16524-16535. | 3.1 | 7 | | 6 | Experimental calibration of the reduced partition function ratios of tetrahedrally coordinated silicon from the Debye–Waller factors. Contributions To Mineralogy and Petrology, 2021, 176, 1. | 3.1 | 3 | | 7 | Structure and Surface Complexation at the Calcite(104)–Water Interface. Environmental Science & Louis (104)–Water (104)— (104)–Water Interface. Environmental Science & Louis (104)— (104)–Water Interface. Environmental Science & Louis (104)— (104)⧠(10 | 10.0 | 12 | | 8 | Interfacial X-Ray Scattering From Small Surfaces: Adapting Mineral-Fluid Structure Methods for Microcrystalline Materials. Clays and Clay Minerals, 2021, 69, 688-701. | 1.3 | 2 | | 9 | Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries. Carbon, 2020, 170, 430-438. | 10.3 | 26 | | 10 | Epitaxial Growth of Gibbsite Sheets on the Basal Surface of Muscovite Mica. Journal of Physical Chemistry C, 2019, 123, 27615-27627. | 3.1 | 10 | | 11 | Mineralogical and geochemical constraints on chromium oxidation induced by birnessite. Applied Geochemistry, 2019, 108, 104365. | 3.0 | 16 | | 12 | A Paris-Edinburgh Cell for High-Pressure and High-Temperature Structure Studies on Silicate Liquids Using Monochromatic Synchrotron Radiation. Minerals (Basel, Switzerland), 2019, 9, 715. | 2.0 | 7 | | 13 | Dissolution Kinetics of Epitaxial Cadmium Carbonate Overgrowths on Dolomite. ACS Earth and Space Chemistry, 2019, 3, 212-220. | 2.7 | 3 | | 14 | Comparative response of interfacial water structure to pH variations and arsenate adsorption on corundum (0†1†2) and (0†0†1) surfaces. Geochimica Et Cosmochimica Acta, 2019, 246, 406-418. | 3.9 | 7 | | 15 | Reductive Dissolution Mechanisms at the Hematite-Electrolyte Interface Probed by <i>in Situ</i> X-ray Scattering. Journal of Physical Chemistry C, 2019, 123, 8077-8085. | 3.1 | 8 | | 16 | Simultaneous Adsorption and Incorporation of Sr ²⁺ at the Barite (001)–Water Interface. Journal of Physical Chemistry C, 2019, 123, 1194-1207. | 3.1 | 21 | | 17 | Fast identification of mineral inclusions in diamondÂat GSECARS using synchrotron X-ray microtomography, radiography and diffraction. Journal of Synchrotron Radiation, 2019, 26, 1763-1768. | 2.4 | 9 | In situ structural study of the surface complexation of lead(II) on the chemically mechanically polished hematite (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif") Tj ETQq0 0 9, gBT /Overlock 10 T surface. Journal of Colloid and Interface Science, 2018, 524, 65-75. | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Evolution of Strain in Heteroepitaxial Cadmium Carbonate Overgrowths on Dolomite. Crystal Growth and Design, 2018, 18, 2871-2882. | 3.0 | 6 | | 20 | Formation and Aggregation of ZrO ₂ Nanoparticles on Muscovite (001). Journal of Physical Chemistry C, 2018, 122, 3865-3874. | 3.1 | 9 | | 21 | The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP. Advances in Colloid and Interface Science, 2018, 251, 1-25. | 14.7 | 25 | | 22 | Potentialâ€Specific Structure at the Hematite–Electrolyte Interface. Advanced Functional Materials, 2018, 28, 1705618. | 14.9 | 16 | | 23 | Competitive Adsorption of ZrO ₂ Nanoparticle and Alkali Cations (Li ⁺ –Cs ⁺) on Muscovite (001). Langmuir, 2018, 34, 12270-12278. | 3.5 | 7 | | 24 | Response of interfacial water to arsenate adsorption on corundum (0 0 1) surfaces: Effects of pH and adsorbate surface coverage. Geochimica Et Cosmochimica Acta, 2018, 239, 198-212. | 3.9 | 16 | | 25 | Dynamics of silver nanoparticles at the solution/biofilm/mineral interface. Environmental Science: Nano, 2018, 5, 2394-2405. | 4.3 | 10 | | 26 | Mineral–Water Interface Structure of Xenotime (YPO4) {100}. Journal of Physical Chemistry C, 2018, 122, 20232-20243. | 3.1 | 10 | | 27 | Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. Geochimica Et Cosmochimica Acta, 2017, 205, 360-380. | 3.9 | 28 | | 28 | Dynamic Stabilization of Metal Oxide–Water Interfaces. Journal of the American Chemical Society, 2017, 139, 2581-2584. | 13.7 | 60 | | 29 | Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source. Journal of Environmental Quality, 2017, 46, 1158-1165. | 2.0 | 24 | | 30 | Hydration Structure of the Barite (001)–Water Interface: Comparison of X-ray Reflectivity with Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 12236-12248. | 3.1 | 38 | | 31 | Oxidative Corrosion of the UO2 (001) Surface by Nonclassical Diffusion. Langmuir, 2017, 33, 13189-13196. | 3.5 | 12 | | 32 | High Pressure Single Crystal Diffraction at PX^2. Journal of Visualized Experiments, 2017, , . | 0.3 | 35 | | 33 | Quantifying small changes in uranium oxidation states using XPS of a shallow core level. Physical Chemistry Chemical Physics, 2017, 19, 30473-30480. | 2.8 | 25 | | 34 | Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 393-406. | 3.9 | 9 | | 35 | Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 368-392. | 3.9 | 19 | | 36 | Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing. Chemical Geology, 2016, 441, 246-255. | 3.3 | 5 | | # | Article | IF | Citations | |----|--|-----------------------------------|-------------------------------| | 37 | Surface Charge of the Calcite (104) Terrace Measured by Rb ⁺ Adsorption in Aqueous Solutions Using Resonant Anomalous X-ray Reflectivity. Journal of Physical Chemistry C, 2016, 120, 15216-15223. | 3.1 | 24 | | 38 | A Comparison of Adsorption, Reduction, and Polymerization of the Plutonyl(VI) and Uranyl(VI) lons from Solution onto the Muscovite Basal Plane. Langmuir, 2016, 32, 10473-10482. | 3.5 | 8 | | 39 | Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 407-423. | 3.9 | 31 | | 40 | Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko. Icarus, 2016, 271, 76-97. | 2.5 | 141 | | 41 | <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>UO</mml:mi></mml:mrow><mml:mn>2Corrosion by Nonclassical Diffusion. Physical Review Letters, 2015, 114, 246103.</mml:mn></mml:msub></mml:mrow></mml:math> | าา ไ:เพิม8> <!--</b-->m | ,
ım l2ភ sub> រ</td | | 42 | Structure–charge relationship – the case of hematite (001). Faraday Discussions, 2015, 180, 55-79. | 3.2 | 32 | | 43 | 67P/Churyumov-Gerasimenko surface properties as derived from CIVA panoramic images. Science, 2015, 349, aab0671. | 12.6 | 47 | | 44 | Effects of the background electrolyte on Th(IV) sorption to muscovite mica. Geochimica Et Cosmochimica Acta, 2015, 165, 280-293. | 3.9 | 11 | | 45 | A refined monoclinic structure for a variety of "hydrohematite". American Mineralogist, 2015, 100, 570-579. | 1.9 | 20 | | 46 | 4. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure. , 2014, , 139-174. | | 4 | | 47 | Electrolyte layering at the calcite(104)–water interface indicated by Rb ⁺ - and Se(<scp>vi</scp>) K-edge resonant interface diffraction. Physical Chemistry Chemical Physics, 2014, 16, 12782-12792. | 2.8 | 13 | | 48 | Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure. Reviews in Mineralogy and Geochemistry, 2014, 78, 139-174. | 4.8 | 37 | | 49 | Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface. Environmental Science & Environment | 10.0 | 27 | | 50 | Elastic and inelastic behavior of graphitic C3N4 under high pressure. Chemical Physics Letters, 2013, 575, 67-70. | 2.6 | 12 | | 51 | Applications of in situ synchrotron XRD in hydrometallurgy: Literature review and investigation of chalcopyrite dissolution. Hydrometallurgy, 2013, 131-132, 54-66. | 4.3 | 40 | | 52 | Competitive Sorption of Pb(II) and Zn(II) on Polyacrylic Acid-Coated Hydrated Aluminum-Oxide Surfaces. Environmental Science & | 10.0 | 18 | | 53 | Density-functional theory investigation of oxidative corrosion of UO2. Computational and Theoretical Chemistry, 2012, 987, 90-102. | 2.5 | 25 | | 54 | Compressional, temporal, and compositional behavior of H2-O2 compound formed by high pressure x-ray irradiation. Journal of Chemical Physics, 2011, 134, 234502. | 3.0 | 2 | | # | Article | IF | CITATIONS | |----|--|---------------------|---| | 55 | The sub-micron resolution X-ray spectroscopy beamline at NSLS-II. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 46-48. | 1.6 | 8 | | 56 | A flow-through reaction cell that couples time-resolved X-ray diffraction with stable isotope analysis. Journal of Applied Crystallography, 2011, 44, 429-432. | 4.5 | 23 | | 57 | Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach. Journal of Synchrotron Radiation, 2011, 18, 871-878. | 2.4 | 31 | | 58 | Structure and reactivity of the calcite–water interface. Journal of Colloid and Interface Science, 2011, 354, 843-857. | 9.4 | 249 | | 59 | The role of interstitial gas in determining the impact response of granular beds. Europhysics Letters, 2011, 93, 28008. | 2.0 | 50 | | 60 | A new x-ray interface and surface scattering environmental cell design for <i>in situ</i> studies of radioactive and atmosphere-sensitive samples. Review of Scientific Instruments, 2011, 82, 075105. | 1.3 | 10 | | 61 | Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction. Surface Science, 2010, 604, 1082-1093. | 1.9 | 21 | | 62 | Electronic Structure of Crystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>He</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>4</mml:mn></mml:mmultiscripts></mml:math> at High Pressures. Physical Review Letters, 2010, 105, 186404. | 7.8 | 26 | | 63 | X-ray fluorescence tomography using imaging detectors. , 2010, , . | | 4 | | 64 | Hydrated goethite (α-FeOOH) (100) interface structure: Ordered water and surface functional groups. Geochimica Et Cosmochimica Acta, 2010, 74, 1943-1953. | 3.9 | 108 | | 65 | Application of grazing incidence x-ray fluorescence technique to discriminate and quantify implanted solar wind. Journal of Applied Physics, 2009, 105, 064905. | 2.5 | 8 | | 66 | Fe(II) adsorption on hematite (0001). Geochimica Et Cosmochimica Acta, 2009, 73, 4346-4365. | 3.9 | 64 | | 67 | X-ray Raman scattering study of MgSiO ₃ glass at high pressure: Implication for triclustered MgSiO ₃ melt in Earth's mantle. Proceedings of the National Academy of Stiuctural/StudyLoffFe(II) tadsorption of the National Academy of Stiuctural/StudyLoffFe(II) tadsorption of the National Academy of Stiuctural/StudyLoffFe(III) tadsorption of the National Management of the National Academy of Stiuctural Study of National Academy of Natio | 7.1 | 123 | | 68 | xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si15.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mover) 0="" 10="" 217="" 50="" etqq0="" overlock="" rgbt="" t<="" td="" tf="" tj=""><td>d (ascent=</td><td>"truæ/"><mml:< td=""></mml:<></td></mml:mover)></mml:mrow> | d (a sc ent= | "truæ / "> <mml:< td=""></mml:<> | | 69 | Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure. Physical Review B, 2008, 78, . | 3. 2 | 32 | | 70 | Correction for Meng <i>et al.</i> , Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16057-16057. | 7.1 | 1 | | 71 | Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11640-11644. | 7.1 | 51 | | 72 | Birth and growth of a granular jet. Physical Review E, 2008, 78, 011305. | 2.1 | 28 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 73 | Chapter 1 Surface Structure and Reactivity of Iron Oxide–Water Interfaces. Developments in Earth and Environmental Sciences, 2007, , 1-29. | 0.1 | 4 | | 74 | Chapter 2 Anion Sorption Topology on Hematite: Comparison of Arsenate and Silicate. Developments in Earth and Environmental Sciences, 2007, , 31-65. | 0.1 | 5 | | 75 | Structure of Alkali Borate Glasses at High Pressure: B and LiK-Edge Inelastic X-Ray Scattering Study. Physical Review Letters, 2007, 98, 105502. | 7.8 | 68 | | 76 | Gas-Mediated Impact Dynamics in Fine-Grained Granular Materials. Physical Review Letters, 2007, 99, 038003. | 7.8 | 43 | | 77 | Electronic bonding transition in compressedSiO2glass. Physical Review B, 2007, 75, . | 3.2 | 81 | | 78 | Structure of the Hydrated (1011,4) Surface of Rhodochrosite (MnCO3). Environmental Science & Eamp; Technology, 2007, 41, 3918-3925. | 10.0 | 25 | | 79 | Surface diffraction study of the hydrated hematite surface. Surface Science, 2007, 601, 460-474. | 1.9 | 97 | | 80 | Hydrated α-Fe2O3 surface structure: Role of surface preparation. Surface Science, 2007, 601, L59-L64. | 1.9 | 57 | | 81 | Recent advances in surface, interface, and environmental geochemistry. , 2007, , . | | 0 | | 82 | Plutonium Oxidation and Subsequent Reduction by Mn(IV) Minerals in Yucca Mountain Tuff. Environmental Science & | 10.0 | 70 | | 83 | Structure and reactivity of environmental interfaces: Application of grazing angle X-ray spectroscopy and long-period X-ray standing waves. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 66-85. | 1.7 | 49 | | 84 | X-ray-Induced Dissociation of H2O and Formation of an O2-H2 Alloy at High Pressure. Science, 2006, 314, 636-638. | 12.6 | 84 | | 85 | Trace Metal Ion Partitioning at Polymer Filmâ^'Metal Oxide Interfaces:Â Long-Period X-ray Standing Wave Study. Langmuir, 2005, 21, 4503-4511. | 3.5 | 16 | | 86 | Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-rayÂscattering. Nature Materials, 2005, 4, 851-854. | 27.5 | 178 | | 87 | Formation of granular jets observed by high-speed X-ray radiography. Nature Physics, 2005, 1, 164-167. | 16.7 | 115 | | 88 | Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate on hematite (0001) and (10–12). Analytical and Bioanalytical Chemistry, 2005, 383, 12-27. | 3.7 | 66 | | 89 | Facilities for high-pressure research with the diamond anvil cell at GSECARS. Journal of Synchrotron Radiation, 2005, 12, 642-649. | 2.4 | 56 | | 90 | Determining the Conformation of an Adsorbed Brâ^'PEGâ^'Peptide by Long Period X-Ray Standing Wave Fluorescence. Langmuir, 2005, 21, 7899-7906. | 3.5 | 2 | | # | Article | IF | Citations | |-----|---|------|-----------| | 91 | Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochimica Et Cosmochimica Acta, 2005, 69, 2333-2348. | 3.9 | 148 | | 92 | CTR diffraction and grazing-incidence EXAFS study of U(VI) adsorption onto \hat{l}_{\pm} -Al2O3 and \hat{l}_{\pm} -Fe2O3 (11 \hat{l}_{μ} 02) surfaces. Geochimica Et Cosmochimica Acta, 2005, 69, 3555-3572. | 3.9 | 84 | | 93 | The formation of sp3 bonding in compressed BN. Nature Materials, 2004, 3, 111-114. | 27.5 | 162 | | 94 | Structure and reactivity of the hydrated hematite (0001) surface. Surface Science, 2004, 573, 204-224. | 1.9 | 279 | | 95 | Recoating mirrors having a chromium underlayer. , 2004, 5193, 177. | | 1 | | 96 | Bonding Changes in Compressed Superhard Graphite. Science, 2003, 302, 425-427. | 12.6 | 610 | | 97 | Surface oxidation of rhodonite: structural and chemical study by surface scattering and glancing incidence XAS techniques. Mineralogical Magazine, 2003, 67, 1205-1219. | 1.4 | 13 | | 98 | Mirrors for nanofocusing x-ray beams., 2002,,. | | 4 | | 99 | Microfluorescence and Microtomography Analyses of Heterogeneous Earth and Environmental Materials. Reviews in Mineralogy and Geochemistry, 2002, 49, 429-483. | 4.8 | 79 | | 100 | Crystal truncation rod diffraction study of the \hat{l} ±-Al2O3 (102) surface. Surface Science, 2002, 496, 238-250. | 1.9 | 110 | | 101 | Calculation of crystal truncation rod structure factors for arbitrary rational surface terminations. Journal of Applied Crystallography, 2002, 35, 696-701. | 4.5 | 30 | | 102 | Phonon Density of States of Iron up to 153 Gigapascals. Science, 2001, 292, 914-916. | 12.6 | 284 | | 103 | Metastable vs. unstable growth in the subsurface ordering dynamics of Cu 3 Au (001). Europhysics Letters, 2001, 53, 570-576. | 2.0 | 3 | | 104 | Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa. Physical Review Letters, 2001, 87, 255501. | 7.8 | 71 | | 105 | Quetzalcoatlite: A new octahedral-tetrahedral structure from a 2 \tilde{A} — 2 \tilde{A} — 40 \hat{I} /4m ³ crystal at the Advanced Photon Source-GSE-CARS Facility. American Mineralogist, 2000, 85, 604-607. | 1.9 | 24 | | 106 | Signatures of granular microstructure in dense shear flows. Nature, 2000, 406, 385-389. | 27.8 | 380 | | 107 | Structure of the Hydrated -Al2O3 (0001) Surface. Science, 2000, 288, 1029-1033. | 12.6 | 520 | | 108 | <title>Geoscience applications of x-ray computed microtomography</title> ., 1999, 3772, 78. | | 39 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 109 | Micro-beam X-ray absorption and fluorescence spectroscopies at GSECARS: APS beamline 13ID. Journal of Synchrotron Radiation, 1999, 6, 353-355. | 2.4 | 42 | | 110 | Micro-XAS studies with sorbed plutonium on tuff. Journal of Synchrotron Radiation, 1999, 6, 350-352. | 2.4 | 20 | | 111 | Mineral Associations and Average Oxidation States of Sorbed Pu on Tuff. Environmental Science & Eamp; Technology, 1999, 33, 2163-2169. | 10.0 | 115 | | 112 | <title>Dynamically figured Kirkpatrick Baez x-ray microfocusing optics</title> ., 1998,,. | | 108 | | 113 | A new facility for high-pressure research at the advanced photon source. Geophysical Monograph Series, 1998, , 79-87. | 0.1 | 11 | | 114 | Transition between dynamic regimes in the sputter ablation of Ge(001). Europhysics Letters, 1997, 38, 447-452. | 2.0 | 6 | | 115 | Surface-Induced Giant Anisotropy in the Order Parameter Relaxation at Cu3Au(001). Physical Review Letters, 1997, 78, 3475-3478. | 7.8 | 25 | | 116 | Sputtering of Ge(001): transition between dynamic scaling regimes. Surface Science, 1997, 377-379, 1038-1041. | 1.9 | 7 | | 117 | Room temperature Si(001)-(2 \tilde{A} — 1) reconstruction solved by X-ray diffraction. Surface Science, 1997, 375, 55-62. | 1.9 | 52 | | 118 | Higher order reconstructions of Pt(110) induced by impurities. Surface Science, 1996, 367, 105-112. | 1.9 | 10 | | 119 | Microfocusing using K-B optics for GEOCARS-APS: first results. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C531-C531. | 0.3 | 0 | | 120 | <title>Microfocusing 4-keV to 65-keV xrays with bent Kirkpatrick-Baez mirrors</title> ., 1995,,. | | 56 | | 121 | Near-surface and bulk short-range order inCu3Au. Physical Review B, 1995, 52, 9955-9963. | 3.2 | 10 | | 122 | Anharmonic thermal vibrations observed by surface X-ray diffraction for. Surface Science, 1995, 331-333, 1422-1429. | 1.9 | 15 | | 123 | GeoCARS microfocusing Kirkpatrick–Baez mirror bender development. Review of Scientific
Instruments, 1995, 66, 2278-2280. | 1.3 | 97 | | 124 | Thermodynamics of Surface Segregation Profiles at Cu3Au(001) Resolved by X-Ray Scattering. Physical Review Letters, 1995, 74, 2006-2009. | 7.8 | 93 | | 125 | Epitaxy and domain growth of Pb on Ni(001). Journal of Physics Condensed Matter, 1994, 6, 6111-6123. | 1.8 | 4 | | 126 | The structure of K- and Cs-monolayers on Cu(0 0 1): diffraction experiments far from the Bragg point. Physica B: Condensed Matter, 1994, 198, 66-69. | 2.7 | 2 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 127 | Coverage-dependent adsorption sites for K/Cu(001) and Cs/Cu(001) determined by surface X-ray diffraction. Surface Science, 1994, 304, 267-280. | 1.9 | 32 | | 128 | X-ray determination of the $1\tilde{A}-3$ reconstruction of Pt(110). Physical Review B, 1993, 47, 10700-10705. | 3.2 | 18 | | 129 | Construction and performance of a bent crystal xâ€fay monochromator. Review of Scientific Instruments, 1993, 64, 374-378. | 1.3 | 16 | | 130 | Triple chain model of the reconstructed Mo(001) surface. Physical Review Letters, 1993, 70, 1291-1294. | 7.8 | 19 | | 131 | Coverage dependent adsorption sites in the K/Cu(100) system: A crystal truncation rod analysis. Zeitschrift Fur Kristallographie - Crystalline Materials, 1993, 208, 73-92. | 0.8 | 9 | | 132 | Cluster formation in the adsorbate-induced reconstruction of the O/Mo(001) surface. Journal of Physics Condensed Matter, 1992, 4, 5845-5854. | 1.8 | 15 | | 133 | Layerwise reaction at a buried interface. Physical Review Letters, 1992, 69, 2539-2542. | 7.8 | 17 | | 134 | Anomalous power-law ordering kinetics of Pb on Ni(001). Physical Review B, 1992, 46, 5024-5027. | 3.2 | 5 | | 135 | Interfacial X-ray oscillations during growth of Pd2Si on Si(111). Applied Surface Science, 1992, 60-61, 498-504. | 6.1 | 6 | | 136 | <title>Kinetics of surface ordering: Pb on Ni(001)</title> ., 1991,,. | | 0 | | 137 | The SUNY X21B beamline at NSLS: Spectroscopy and versatile surface science facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1988, 266, 210-214. | 1.6 | 3 | | 138 | Superhydrous hematite and goethite: A potential water reservoir in the red dust of Mars?. Geology, 0, | 4.4 | 10 |