Peter J Eng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10197219/publications.pdf

Version: 2024-02-01

138	6,595	38	77
papers	citations	h-index	g-index
145	145	145	6671 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A multi-faceted experimental study on the dynamic behavior of MgSiO3 glass in the Earth's deep interior. American Mineralogist, 2022, 107, 1313-1324.	1.9	2
2	Impact of Ion–Ion Correlations on the Adsorption of M(III) (M = Am, Eu, Y) onto Muscovite (001) in the Presence of Sulfate. Journal of Physical Chemistry C, 2022, 126, 1400-1410.	3.1	3
3	Recent developments on high-pressure single-crystal X-ray diffraction at the Partnership for eXtreme Xtallography (PX2) program. Physics and Chemistry of Minerals, 2022, 49, .	0.8	3
4	Hematite-goethite ratios at pHÂ2–13 and 25–170°C: A time-resolved synchrotron X-ray diffraction study. Chemical Geology, 2022, 606, 120995.	3.3	8
5	Effect of Background Electrolyte Composition on the Interfacial Formation of Th(IV) Nanoparticles on the Muscovite (001) Basal Plane. Journal of Physical Chemistry C, 2021, 125, 16524-16535.	3.1	7
6	Experimental calibration of the reduced partition function ratios of tetrahedrally coordinated silicon from the Debye–Waller factors. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	3
7	Structure and Surface Complexation at the Calcite(104)–Water Interface. Environmental Science & Louis (104)–Water Interface. Environmental Science & Louis (104)— (104)–Water Interface. Environmental Science & Louis (104)— (104)–Water Interface. Environmental Science & Louis (104)— (104)⧠(10	10.0	12
8	Interfacial X-Ray Scattering From Small Surfaces: Adapting Mineral-Fluid Structure Methods for Microcrystalline Materials. Clays and Clay Minerals, 2021, 69, 688-701.	1.3	2
9	Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries. Carbon, 2020, 170, 430-438.	10.3	26
10	Epitaxial Growth of Gibbsite Sheets on the Basal Surface of Muscovite Mica. Journal of Physical Chemistry C, 2019, 123, 27615-27627.	3.1	10
11	Mineralogical and geochemical constraints on chromium oxidation induced by birnessite. Applied Geochemistry, 2019, 108, 104365.	3.0	16
12	A Paris-Edinburgh Cell for High-Pressure and High-Temperature Structure Studies on Silicate Liquids Using Monochromatic Synchrotron Radiation. Minerals (Basel, Switzerland), 2019, 9, 715.	2.0	7
13	Dissolution Kinetics of Epitaxial Cadmium Carbonate Overgrowths on Dolomite. ACS Earth and Space Chemistry, 2019, 3, 212-220.	2.7	3
14	Comparative response of interfacial water structure to pH variations and arsenate adsorption on corundum (0†1†2) and (0†0†1) surfaces. Geochimica Et Cosmochimica Acta, 2019, 246, 406-418.	3.9	7
15	Reductive Dissolution Mechanisms at the Hematite-Electrolyte Interface Probed by <i>in Situ</i> X-ray Scattering. Journal of Physical Chemistry C, 2019, 123, 8077-8085.	3.1	8
16	Simultaneous Adsorption and Incorporation of Sr ²⁺ at the Barite (001)–Water Interface. Journal of Physical Chemistry C, 2019, 123, 1194-1207.	3.1	21
17	Fast identification of mineral inclusions in diamondÂat GSECARS using synchrotron X-ray microtomography, radiography and diffraction. Journal of Synchrotron Radiation, 2019, 26, 1763-1768.	2.4	9

In situ structural study of the surface complexation of lead(II) on the chemically mechanically polished hematite (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif") Tj ETQq0 0 9, gBT /Overlock 10 T surface. Journal of Colloid and Interface Science, 2018, 524, 65-75.

#	Article	IF	CITATIONS
19	Evolution of Strain in Heteroepitaxial Cadmium Carbonate Overgrowths on Dolomite. Crystal Growth and Design, 2018, 18, 2871-2882.	3.0	6
20	Formation and Aggregation of ZrO ₂ Nanoparticles on Muscovite (001). Journal of Physical Chemistry C, 2018, 122, 3865-3874.	3.1	9
21	The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP. Advances in Colloid and Interface Science, 2018, 251, 1-25.	14.7	25
22	Potentialâ€Specific Structure at the Hematite–Electrolyte Interface. Advanced Functional Materials, 2018, 28, 1705618.	14.9	16
23	Competitive Adsorption of ZrO ₂ Nanoparticle and Alkali Cations (Li ⁺ –Cs ⁺) on Muscovite (001). Langmuir, 2018, 34, 12270-12278.	3.5	7
24	Response of interfacial water to arsenate adsorption on corundum (0 0 1) surfaces: Effects of pH and adsorbate surface coverage. Geochimica Et Cosmochimica Acta, 2018, 239, 198-212.	3.9	16
25	Dynamics of silver nanoparticles at the solution/biofilm/mineral interface. Environmental Science: Nano, 2018, 5, 2394-2405.	4.3	10
26	Mineral–Water Interface Structure of Xenotime (YPO4) {100}. Journal of Physical Chemistry C, 2018, 122, 20232-20243.	3.1	10
27	Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. Geochimica Et Cosmochimica Acta, 2017, 205, 360-380.	3.9	28
28	Dynamic Stabilization of Metal Oxide–Water Interfaces. Journal of the American Chemical Society, 2017, 139, 2581-2584.	13.7	60
29	Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source. Journal of Environmental Quality, 2017, 46, 1158-1165.	2.0	24
30	Hydration Structure of the Barite (001)–Water Interface: Comparison of X-ray Reflectivity with Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 12236-12248.	3.1	38
31	Oxidative Corrosion of the UO2 (001) Surface by Nonclassical Diffusion. Langmuir, 2017, 33, 13189-13196.	3.5	12
32	High Pressure Single Crystal Diffraction at PX^2. Journal of Visualized Experiments, 2017, , .	0.3	35
33	Quantifying small changes in uranium oxidation states using XPS of a shallow core level. Physical Chemistry Chemical Physics, 2017, 19, 30473-30480.	2.8	25
34	Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 393-406.	3.9	9
35	Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 368-392.	3.9	19
36	Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing. Chemical Geology, 2016, 441, 246-255.	3.3	5

#	Article	IF	Citations
37	Surface Charge of the Calcite (104) Terrace Measured by Rb ⁺ Adsorption in Aqueous Solutions Using Resonant Anomalous X-ray Reflectivity. Journal of Physical Chemistry C, 2016, 120, 15216-15223.	3.1	24
38	A Comparison of Adsorption, Reduction, and Polymerization of the Plutonyl(VI) and Uranyl(VI) lons from Solution onto the Muscovite Basal Plane. Langmuir, 2016, 32, 10473-10482.	3.5	8
39	Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 407-423.	3.9	31
40	Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko. Icarus, 2016, 271, 76-97.	2.5	141
41	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>UO</mml:mi></mml:mrow><mml:mn>2Corrosion by Nonclassical Diffusion. Physical Review Letters, 2015, 114, 246103.</mml:mn></mml:msub></mml:mrow></mml:math>	าา ไ:เพิม8> <!--</b-->m	, ım l2ភ sub> រ</td
42	Structure–charge relationship – the case of hematite (001). Faraday Discussions, 2015, 180, 55-79.	3.2	32
43	67P/Churyumov-Gerasimenko surface properties as derived from CIVA panoramic images. Science, 2015, 349, aab0671.	12.6	47
44	Effects of the background electrolyte on Th(IV) sorption to muscovite mica. Geochimica Et Cosmochimica Acta, 2015, 165, 280-293.	3.9	11
45	A refined monoclinic structure for a variety of "hydrohematite". American Mineralogist, 2015, 100, 570-579.	1.9	20
46	4. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure. , 2014, , 139-174.		4
47	Electrolyte layering at the calcite(104)–water interface indicated by Rb ⁺ - and Se(<scp>vi</scp>) K-edge resonant interface diffraction. Physical Chemistry Chemical Physics, 2014, 16, 12782-12792.	2.8	13
48	Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure. Reviews in Mineralogy and Geochemistry, 2014, 78, 139-174.	4.8	37
49	Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface. Environmental Science & Environment	10.0	27
50	Elastic and inelastic behavior of graphitic C3N4 under high pressure. Chemical Physics Letters, 2013, 575, 67-70.	2.6	12
51	Applications of in situ synchrotron XRD in hydrometallurgy: Literature review and investigation of chalcopyrite dissolution. Hydrometallurgy, 2013, 131-132, 54-66.	4.3	40
52	Competitive Sorption of Pb(II) and Zn(II) on Polyacrylic Acid-Coated Hydrated Aluminum-Oxide Surfaces. Environmental Science &	10.0	18
53	Density-functional theory investigation of oxidative corrosion of UO2. Computational and Theoretical Chemistry, 2012, 987, 90-102.	2.5	25
54	Compressional, temporal, and compositional behavior of H2-O2 compound formed by high pressure x-ray irradiation. Journal of Chemical Physics, 2011, 134, 234502.	3.0	2

#	Article	IF	CITATIONS
55	The sub-micron resolution X-ray spectroscopy beamline at NSLS-II. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 46-48.	1.6	8
56	A flow-through reaction cell that couples time-resolved X-ray diffraction with stable isotope analysis. Journal of Applied Crystallography, 2011, 44, 429-432.	4.5	23
57	Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach. Journal of Synchrotron Radiation, 2011, 18, 871-878.	2.4	31
58	Structure and reactivity of the calcite–water interface. Journal of Colloid and Interface Science, 2011, 354, 843-857.	9.4	249
59	The role of interstitial gas in determining the impact response of granular beds. Europhysics Letters, 2011, 93, 28008.	2.0	50
60	A new x-ray interface and surface scattering environmental cell design for <i>in situ</i> studies of radioactive and atmosphere-sensitive samples. Review of Scientific Instruments, 2011, 82, 075105.	1.3	10
61	Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction. Surface Science, 2010, 604, 1082-1093.	1.9	21
62	Electronic Structure of Crystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>He</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>4</mml:mn></mml:mmultiscripts></mml:math> at High Pressures. Physical Review Letters, 2010, 105, 186404.	7.8	26
63	X-ray fluorescence tomography using imaging detectors. , 2010, , .		4
64	Hydrated goethite (α-FeOOH) (100) interface structure: Ordered water and surface functional groups. Geochimica Et Cosmochimica Acta, 2010, 74, 1943-1953.	3.9	108
65	Application of grazing incidence x-ray fluorescence technique to discriminate and quantify implanted solar wind. Journal of Applied Physics, 2009, 105, 064905.	2.5	8
66	Fe(II) adsorption on hematite (0001). Geochimica Et Cosmochimica Acta, 2009, 73, 4346-4365.	3.9	64
67	X-ray Raman scattering study of MgSiO ₃ glass at high pressure: Implication for triclustered MgSiO ₃ melt in Earth's mantle. Proceedings of the National Academy of Stiuctural/StudyLoffFe(II) tadsorption of the National Academy of Stiuctural/StudyLoffFe(II) tadsorption of the National Academy of Stiuctural/StudyLoffFe(III) tadsorption of the National Management of the National Academy of Stiuctural Study of National Academy of of Natio	7.1	123
68	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si15.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mover) 0="" 10="" 217="" 50="" etqq0="" overlock="" rgbt="" t<="" td="" tf="" tj=""><td>d (ascent=</td><td>"truæ/"><mml:< td=""></mml:<></td></mml:mover)></mml:mrow>	d (a sc ent=	"truæ / "> <mml:< td=""></mml:<>
69	Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure. Physical Review B, 2008, 78, .	3. 2	32
70	Correction for Meng <i>et al.</i> , Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16057-16057.	7.1	1
71	Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11640-11644.	7.1	51
72	Birth and growth of a granular jet. Physical Review E, 2008, 78, 011305.	2.1	28

#	Article	IF	CITATIONS
73	Chapter 1 Surface Structure and Reactivity of Iron Oxide–Water Interfaces. Developments in Earth and Environmental Sciences, 2007, , 1-29.	0.1	4
74	Chapter 2 Anion Sorption Topology on Hematite: Comparison of Arsenate and Silicate. Developments in Earth and Environmental Sciences, 2007, , 31-65.	0.1	5
75	Structure of Alkali Borate Glasses at High Pressure: B and LiK-Edge Inelastic X-Ray Scattering Study. Physical Review Letters, 2007, 98, 105502.	7.8	68
76	Gas-Mediated Impact Dynamics in Fine-Grained Granular Materials. Physical Review Letters, 2007, 99, 038003.	7.8	43
77	Electronic bonding transition in compressedSiO2glass. Physical Review B, 2007, 75, .	3.2	81
78	Structure of the Hydrated (1011,4) Surface of Rhodochrosite (MnCO3). Environmental Science & Eamp; Technology, 2007, 41, 3918-3925.	10.0	25
79	Surface diffraction study of the hydrated hematite surface. Surface Science, 2007, 601, 460-474.	1.9	97
80	Hydrated α-Fe2O3 surface structure: Role of surface preparation. Surface Science, 2007, 601, L59-L64.	1.9	57
81	Recent advances in surface, interface, and environmental geochemistry. , 2007, , .		0
82	Plutonium Oxidation and Subsequent Reduction by Mn(IV) Minerals in Yucca Mountain Tuff. Environmental Science & Environmental	10.0	70
83	Structure and reactivity of environmental interfaces: Application of grazing angle X-ray spectroscopy and long-period X-ray standing waves. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 66-85.	1.7	49
84	X-ray-Induced Dissociation of H2O and Formation of an O2-H2 Alloy at High Pressure. Science, 2006, 314, 636-638.	12.6	84
85	Trace Metal Ion Partitioning at Polymer Filmâ^'Metal Oxide Interfaces:Â Long-Period X-ray Standing Wave Study. Langmuir, 2005, 21, 4503-4511.	3.5	16
86	Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-rayÂscattering. Nature Materials, 2005, 4, 851-854.	27.5	178
87	Formation of granular jets observed by high-speed X-ray radiography. Nature Physics, 2005, 1, 164-167.	16.7	115
88	Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate on hematite (0001) and (10–12). Analytical and Bioanalytical Chemistry, 2005, 383, 12-27.	3.7	66
89	Facilities for high-pressure research with the diamond anvil cell at GSECARS. Journal of Synchrotron Radiation, 2005, 12, 642-649.	2.4	56
90	Determining the Conformation of an Adsorbed Brâ^'PEGâ^'Peptide by Long Period X-Ray Standing Wave Fluorescence. Langmuir, 2005, 21, 7899-7906.	3.5	2

#	Article	IF	Citations
91	Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochimica Et Cosmochimica Acta, 2005, 69, 2333-2348.	3.9	148
92	CTR diffraction and grazing-incidence EXAFS study of U(VI) adsorption onto \hat{l}_{\pm} -Al2O3 and \hat{l}_{\pm} -Fe2O3 (11 \hat{l}_{μ} 02) surfaces. Geochimica Et Cosmochimica Acta, 2005, 69, 3555-3572.	3.9	84
93	The formation of sp3 bonding in compressed BN. Nature Materials, 2004, 3, 111-114.	27.5	162
94	Structure and reactivity of the hydrated hematite (0001) surface. Surface Science, 2004, 573, 204-224.	1.9	279
95	Recoating mirrors having a chromium underlayer. , 2004, 5193, 177.		1
96	Bonding Changes in Compressed Superhard Graphite. Science, 2003, 302, 425-427.	12.6	610
97	Surface oxidation of rhodonite: structural and chemical study by surface scattering and glancing incidence XAS techniques. Mineralogical Magazine, 2003, 67, 1205-1219.	1.4	13
98	Mirrors for nanofocusing x-ray beams., 2002,,.		4
99	Microfluorescence and Microtomography Analyses of Heterogeneous Earth and Environmental Materials. Reviews in Mineralogy and Geochemistry, 2002, 49, 429-483.	4.8	79
100	Crystal truncation rod diffraction study of the \hat{l} ±-Al2O3 (102) surface. Surface Science, 2002, 496, 238-250.	1.9	110
101	Calculation of crystal truncation rod structure factors for arbitrary rational surface terminations. Journal of Applied Crystallography, 2002, 35, 696-701.	4.5	30
102	Phonon Density of States of Iron up to 153 Gigapascals. Science, 2001, 292, 914-916.	12.6	284
103	Metastable vs. unstable growth in the subsurface ordering dynamics of Cu 3 Au (001). Europhysics Letters, 2001, 53, 570-576.	2.0	3
104	Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa. Physical Review Letters, 2001, 87, 255501.	7.8	71
105	Quetzalcoatlite: A new octahedral-tetrahedral structure from a 2 \tilde{A} — 2 \tilde{A} — 40 \hat{I} /4m ³ crystal at the Advanced Photon Source-GSE-CARS Facility. American Mineralogist, 2000, 85, 604-607.	1.9	24
106	Signatures of granular microstructure in dense shear flows. Nature, 2000, 406, 385-389.	27.8	380
107	Structure of the Hydrated -Al2O3 (0001) Surface. Science, 2000, 288, 1029-1033.	12.6	520
108	<title>Geoscience applications of x-ray computed microtomography</title> ., 1999, 3772, 78.		39

#	Article	IF	CITATIONS
109	Micro-beam X-ray absorption and fluorescence spectroscopies at GSECARS: APS beamline 13ID. Journal of Synchrotron Radiation, 1999, 6, 353-355.	2.4	42
110	Micro-XAS studies with sorbed plutonium on tuff. Journal of Synchrotron Radiation, 1999, 6, 350-352.	2.4	20
111	Mineral Associations and Average Oxidation States of Sorbed Pu on Tuff. Environmental Science & Eamp; Technology, 1999, 33, 2163-2169.	10.0	115
112	<title>Dynamically figured Kirkpatrick Baez x-ray microfocusing optics</title> ., 1998,,.		108
113	A new facility for high-pressure research at the advanced photon source. Geophysical Monograph Series, 1998, , 79-87.	0.1	11
114	Transition between dynamic regimes in the sputter ablation of Ge(001). Europhysics Letters, 1997, 38, 447-452.	2.0	6
115	Surface-Induced Giant Anisotropy in the Order Parameter Relaxation at Cu3Au(001). Physical Review Letters, 1997, 78, 3475-3478.	7.8	25
116	Sputtering of Ge(001): transition between dynamic scaling regimes. Surface Science, 1997, 377-379, 1038-1041.	1.9	7
117	Room temperature Si(001)-(2 \tilde{A} — 1) reconstruction solved by X-ray diffraction. Surface Science, 1997, 375, 55-62.	1.9	52
118	Higher order reconstructions of Pt(110) induced by impurities. Surface Science, 1996, 367, 105-112.	1.9	10
119	Microfocusing using K-B optics for GEOCARS-APS: first results. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C531-C531.	0.3	0
120	<title>Microfocusing 4-keV to 65-keV xrays with bent Kirkpatrick-Baez mirrors</title> ., 1995,,.		56
121	Near-surface and bulk short-range order inCu3Au. Physical Review B, 1995, 52, 9955-9963.	3.2	10
122	Anharmonic thermal vibrations observed by surface X-ray diffraction for. Surface Science, 1995, 331-333, 1422-1429.	1.9	15
123	GeoCARS microfocusing Kirkpatrick–Baez mirror bender development. Review of Scientific Instruments, 1995, 66, 2278-2280.	1.3	97
124	Thermodynamics of Surface Segregation Profiles at Cu3Au(001) Resolved by X-Ray Scattering. Physical Review Letters, 1995, 74, 2006-2009.	7.8	93
125	Epitaxy and domain growth of Pb on Ni(001). Journal of Physics Condensed Matter, 1994, 6, 6111-6123.	1.8	4
126	The structure of K- and Cs-monolayers on Cu(0 0 1): diffraction experiments far from the Bragg point. Physica B: Condensed Matter, 1994, 198, 66-69.	2.7	2

#	Article	IF	Citations
127	Coverage-dependent adsorption sites for K/Cu(001) and Cs/Cu(001) determined by surface X-ray diffraction. Surface Science, 1994, 304, 267-280.	1.9	32
128	X-ray determination of the $1\tilde{A}-3$ reconstruction of Pt(110). Physical Review B, 1993, 47, 10700-10705.	3.2	18
129	Construction and performance of a bent crystal xâ€fay monochromator. Review of Scientific Instruments, 1993, 64, 374-378.	1.3	16
130	Triple chain model of the reconstructed Mo(001) surface. Physical Review Letters, 1993, 70, 1291-1294.	7.8	19
131	Coverage dependent adsorption sites in the K/Cu(100) system: A crystal truncation rod analysis. Zeitschrift Fur Kristallographie - Crystalline Materials, 1993, 208, 73-92.	0.8	9
132	Cluster formation in the adsorbate-induced reconstruction of the O/Mo(001) surface. Journal of Physics Condensed Matter, 1992, 4, 5845-5854.	1.8	15
133	Layerwise reaction at a buried interface. Physical Review Letters, 1992, 69, 2539-2542.	7.8	17
134	Anomalous power-law ordering kinetics of Pb on Ni(001). Physical Review B, 1992, 46, 5024-5027.	3.2	5
135	Interfacial X-ray oscillations during growth of Pd2Si on Si(111). Applied Surface Science, 1992, 60-61, 498-504.	6.1	6
136	<title>Kinetics of surface ordering: Pb on Ni(001)</title> ., 1991,,.		0
137	The SUNY X21B beamline at NSLS: Spectroscopy and versatile surface science facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1988, 266, 210-214.	1.6	3
138	Superhydrous hematite and goethite: A potential water reservoir in the red dust of Mars?. Geology, 0,	4.4	10