Rui Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10196694/publications.pdf

Version: 2024-02-01

567281 526287 27 808 15 27 h-index citations g-index papers 27 27 27 830 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	In-situ synthesis of stable perovskite quantum dots in core-shell nanofibers via microfluidic electrospinning. Chinese Chemical Letters, 2023, 34, 107384.	9.0	8
2	Carbon dots embedded nanofiber films: Large-scale fabrication and enhanced mechanical properties. Chinese Chemical Letters, 2022, 33, 304-307.	9.0	15
3	Facile synthesis, high fluorescence and flame retardancy of carbon dots. Journal of Materials Science and Technology, 2022, 104, 163-171.	10.7	18
4	Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligandâ€Free Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
5	Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligandâ€Free Perovskite Quantum Dots. Angewandte Chemie, 2022, 134, .	2.0	5
6	Microfluidic synthesis of robust carbon dots-functionalized photonic crystals. Chemical Engineering Journal, 2021, 405, 126539.	12.7	13
7	Robust Nanofiber Films Prepared by Electroâ€Microfluidic Spinning for Flexible Highly Stable Quantumâ€Dot Displays. Advanced Electronic Materials, 2021, 7, 2000626.	5.1	16
8	Microfluidic-assisted assembly of fluorescent self-healing gel particles toward dual-signal sensors. Journal of Materials Science, 2021, 56, 14832-14843.	3.7	4
9	Red dual-emissive carbon dots for ratiometric sensing of veterinary drugs. Journal of Luminescence, 2021, 236, 118092.	3.1	19
10	Mild bottom-up synthesis of carbon dots with temperature-dependent fluorescence. Journal of Luminescence, 2021, 238, 118311.	3.1	9
11	Green Synthesis of Carbon Dots toward Anti-Counterfeiting. ACS Sustainable Chemistry and Engineering, 2020, 8, 1566-1572.	6.7	114
12	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie, 2020, 132, 3123-3129.	2.0	11
13	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie - International Edition, 2020, 59, 3099-3105.	13.8	97
14	Robust hydrophobic veova10-based colloidal photonic crystals towards fluorescence enhancement of quantum dots. Nanoscale, 2020, 12, 19953-19962.	5.6	15
15	Synthesis of quantum dots based on microfluidic technology. Current Opinion in Chemical Engineering, 2020, 29, 34-41.	7.8	19
16	Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 2020, 12, 5494-5500.	5.6	68
17	Magnetothermal microfluidic-directed synthesis of quantum dots. Journal of Materials Chemistry C, 2020, 8, 6358-6363.	5.5	10
18	One-Step Facile Synthesis of Fluorescent Carbon Dots via Magnetic Hyperthermia Method. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 4968-4976.	3.7	15

Rui Cheng

#	Article	IF	CITATION
19	Host-guest supramolecular assembly directing beta-cyclodextrin based nanocrystals towards their robust performances. Journal of Hazardous Materials, 2019, 361, 329-337.	12.4	17
20	A facile synthesis of self-healing hydrogels toward flexible quantum dot-based luminescent solar concentrators and white LEDs. Journal of Materials Chemistry C, 2019, 7, 10988-10995.	5.5	18
21	Hydrophobic Poly(tert â€butyl acrylate) Photonic Crystals towards Robust Energyâ€Saving Performance. Angewandte Chemie, 2019, 131, 13690-13698.	2.0	14
22	Preparation of heterostructure quantum dots towards wide-colour-gamut display. Materials Letters, 2019, 254, 171-174.	2.6	9
23	Hydrophobic Poly(<i>tert</i> à€butyl acrylate) Photonic Crystals towards Robust Energyâ€Saving Performance. Angewandte Chemie - International Edition, 2019, 58, 13556-13564.	13.8	110
24	Fabrication of amphiphilic quantum dots towards high-colour-quality light-emitting devices. Journal of Materials Chemistry C, 2019, 7, 4244-4249.	5.5	23
25	Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39205-39213.	8.0	51
26	Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30785-30793.	8.0	35
27	One-Step Synthesis of FA-Directing FAPbBr ₃ Perovskite Nanocrystals toward High-Performance Display. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31603-31609.	8.0	54