Paola Rizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10193574/publications.pdf Version: 2024-02-01

PAOLA RIZZO

#	Article	IF	CITATIONS
1	Characterization of a Rat Model of Myeloperoxidase-Anti-Neutrophil Cytoplasmic Antibody-Associated Crescentic Glomerulonephritis. Nephron, 2021, 145, 428-444.	1.8	5
2	Morphofunctional Effects of C5 Convertase Blockade in Immune Complex-Mediated Membranoproliferative Glomerulonephritis: Report of Two Cases with Evidence of Terminal Complement Activation. Nephron, 2020, 144, 195-203.	1.8	4
3	Role of ultrastructural determinants of glomerular permeability in ultrafiltration function loss. JCI Insight, 2020, 5, .	5.0	10
4	Histological Examination of the Diabetic Kidney. Methods in Molecular Biology, 2020, 2067, 63-87.	0.9	4
5	Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Scientific Reports, 2019, 9, 8001.	3.3	43
6	C5 Convertase Blockade in Membranoproliferative Glomerulonephritis: A Single-Arm Clinical Trial. American Journal of Kidney Diseases, 2019, 74, 224-238.	1.9	45
7	BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. American Journal of Kidney Diseases, 2017, 70, 145-150.	1.9	25
8	The Role of Angiotensin II in Parietal Epithelial Cell Proliferation and Crescent Formation in Glomerular Diseases. American Journal of Pathology, 2017, 187, 2441-2450.	3.8	20
9	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
10	Inhibiting angiotensin-converting enzyme promotes renal repair by modulating progenitor cell activation. Pharmacological Research, 2016, 108, 16-22.	7.1	11
11	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
12	Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature. Journal of the American Society of Nephrology: JASN, 2016, 27, 699-705.	6.1	36
13	Cellular and molecular determinants of all― <i>trans</i> retinoic acid sensitivity in breast cancer: <i>Luminal</i> phenotype and <scp>RAR</scp> α expression. EMBO Molecular Medicine, 2015, 7, 950-972.	6.9	60
14	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
15	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	4.8	27
16	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	3.3	88
17	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
18	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63

Paola Rizzo

#	Article	IF	CITATIONS
19	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
20	Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transplant International, 2013, 26, 867-878.	1.6	148
21	Nature and Mediators of Parietal Epithelial Cell Activation in Glomerulonephritides of Human and Rat. American Journal of Pathology, 2013, 183, 1769-1778.	3.8	59
22	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	6.1	156
23	MicroRNA-324-3p Promotes Renal Fibrosis and Is a Target of ACE Inhibition. Journal of the American Society of Nephrology: JASN, 2012, 23, 1496-1505.	6.1	84
24	Autologous Mesenchymal Stromal Cells and Kidney Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 412-422.	4.5	273
25	Inhibiting Angiotensin-Converting Enzyme Promotes Renal Repair by Limiting Progenitor Cell Proliferation and Restoring the Glomerular Architecture. American Journal of Pathology, 2011, 179, 628-638.	3.8	100
26	Renal Progenitor Cells Contribute to Hyperplastic Lesions of Podocytopathies and Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2593-2603.	6.1	173