Paola Rizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10193574/publications.pdf

Version: 2024-02-01

26 papers 1,615

394421 19 h-index 26 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

2087 citing authors

#	Article	IF	CITATIONS
1	Autologous Mesenchymal Stromal Cells and Kidney Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 412-422.	4.5	273
2	Renal Progenitor Cells Contribute to Hyperplastic Lesions of Podocytopathies and Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2593-2603.	6.1	173
3	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	6.1	156
4	Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transplant International, 2013, 26, 867-878.	1.6	148
5	Inhibiting Angiotensin-Converting Enzyme Promotes Renal Repair by Limiting Progenitor Cell Proliferation and Restoring the Glomerular Architecture. American Journal of Pathology, 2011, 179, 628-638.	3.8	100
6	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	3.3	88
7	MicroRNA-324-3p Promotes Renal Fibrosis and Is a Target of ACE Inhibition. Journal of the American Society of Nephrology: JASN, 2012, 23, 1496-1505.	6.1	84
8	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
9	Cellular and molecular determinants of all― <i>trans</i> retinoic acid sensitivity in breast cancer: <i>Luminal</i> phenotype and <scp>RAR</scp> α expression. EMBO Molecular Medicine, 2015, 7, 950-972.	6.9	60
10	Nature and Mediators of Parietal Epithelial Cell Activation in Glomerulonephritides of Human and Rat. American Journal of Pathology, 2013, 183, 1769-1778.	3.8	59
11	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
12	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
13	C5 Convertase Blockade in Membranoproliferative Glomerulonephritis: A Single-Arm Clinical Trial. American Journal of Kidney Diseases, 2019, 74, 224-238.	1.9	45
14	Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Scientific Reports, 2019, 9, 8001.	3.3	43
15	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
16	Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature. Journal of the American Society of Nephrology: JASN, 2016, 27, 699-705.	6.1	36
17	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	4.8	27
18	BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. American Journal of Kidney Diseases, 2017, 70, 145-150.	1.9	25

#	Article	IF	CITATION
19	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
20	The Role of Angiotensin II in Parietal Epithelial Cell Proliferation and Crescent Formation in Glomerular Diseases. American Journal of Pathology, 2017, 187, 2441-2450.	3.8	20
21	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
22	Inhibiting angiotensin-converting enzyme promotes renal repair by modulating progenitor cell activation. Pharmacological Research, 2016, 108, 16-22.	7.1	11
23	Role of ultrastructural determinants of glomerular permeability in ultrafiltration function loss. JCI Insight, 2020, 5, .	5.0	10
24	Characterization of a Rat Model of Myeloperoxidase-Anti-Neutrophil Cytoplasmic Antibody-Associated Crescentic Glomerulonephritis. Nephron, 2021, 145, 428-444.	1.8	5
25	Morphofunctional Effects of C5 Convertase Blockade in Immune Complex-Mediated Membranoproliferative Glomerulonephritis: Report of Two Cases with Evidence of Terminal Complement Activation. Nephron, 2020, 144, 195-203.	1.8	4
26	Histological Examination of the Diabetic Kidney. Methods in Molecular Biology, 2020, 2067, 63-87.	0.9	4