Peter Biely

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10193440/publications.pdf

Version: 2024-02-01

34016 34900 11,290 193 52 citations h-index papers

g-index 194 194 194 5949 docs citations times ranked citing authors all docs

98

#	Article	IF	CITATIONS
1	Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 1992, 23, 257-270.	1.9	2,058
2	Microbial xylanolytic systems. Trends in Biotechnology, 1985, 3, 286-290.	4.9	883
3	Endo-Î ² -1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, 1997, 57, 151-166.	1.9	552
4	Soluble chromogenic substrates for the assay of endo-1,4-β-xylanases and endo-1,4-β-glucanases. Analytical Biochemistry, 1985, 144, 142-146.	1.1	271
5	Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnology Advances, 2012, 30, 1575-1588.	6.0	232
6	Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnology Advances, 2016, 34, 1260-1274.	6.0	215
7	Acetyl xylan esterases in fungal cellulolytic systems. FEBS Letters, 1985, 186, 80-84.	1.3	183
8	Cooperativity of Esterases and Xylanases in the Enzymatic Degradation of Acetyl Xylan. Nature Biotechnology, 1986, 4, 731-733.	9.4	160
9	Sensitive detection of endo-1,4-β-glucanases and endo-1,4-β-xylanases in gels. Analytical Biochemistry, 1985, 144, 147-151.	1.1	137
10	Xylan-Degrading Enzymes of the Yeast Cryptococcus albidus. Identification and Cellular Localization. FEBS Journal, 1980, 108, 313-321.	0.2	111
11	Substrate-Binding Site of Endo-1,4-beta-Xylanase of the Yeast Cryptococcus albidus. FEBS Journal, 1981, 119, 559-564.	0.2	111
12	Purification and characterization of a feruloyl esterase from Fusarium oxysporum catalyzing esterification of phenolic acids in ternary water–organic solvent mixtures. Journal of Biotechnology, 2003, 102, 33-44.	1.9	110
13	The endo-1,4-beta-glucanase I from Trichoderma reesei. Action on beta-1, 4-oligomers and polymers derived from d-glucose and d-xylose. FEBS Journal, 1991, 200, 157-163.	0.2	101
14	The \hat{l}^2 -d-xylosidase of Trichoderma reesei is a multifunctional \hat{l}^2 -d-xylan xylohydrolase. Biochemical Journal, 1997, 321, 375-381.	1.7	101
15	Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases. Journal of Biological Chemistry, 2006, 281, 10968-10975.	1.6	99
16	Specificity of cellulase and \hat{l}^2 -xylanase induction in Trichoderma reesei QM 9414. Archives of Microbiology, 1986, 144, 307-311.	1.0	95
17	Induction of cellulose- and xylan-degrading enzyme systems in Aspergillus terreus by homo- and heterodisaccharides composed of glucose and xylose. Journal of General Microbiology, 1991, 137, 541-547.	2.3	95
18	Remazol Brilliant Blue-xylan: A soluble chromogenic substrate for xylanases. Methods in Enzymology, 1988, , 536-541.	0.4	90

#	Article	IF	CITATIONS
19	Purification and characterization of two forms of endo-?-1,4-mannanase from a thermotolerant fungus, IMI 385708 (formerly IMI 158749). Biochimica Et Biophysica Acta - General Subjects, 2004, 1674, 239-250.	1.1	88
20	Glucuronoyl esterase - Novel carbohydrate esterase produced by Schizophyllum commune. FEBS Letters, 2006, 580, 4597-4601.	1.3	88
21	Substrate Binding and Catalytic Mechanism of a Barley \hat{l}^2 -d-Glucosidase/(1,4)- \hat{l}^2 -d-Glucan Exohydrolase. Journal of Biological Chemistry, 1998, 273, 11134-11143.	1.6	86
22	Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme and Microbial Technology, 1999, 24, 355-361.	1.6	86
23	Identification of genes encoding microbial glucuronoyl esterases. FEBS Letters, 2007, 581, 4029-4035.	1.3	83
24	The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydrate Research, 1992, 227, 19-27.	1.1	82
25	Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS Journal, 2007, 274, 1666-1677.	2.2	81
26	Extracellular \hat{l}^2 -glucanases of the yeast, Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 1973, 321, 246-255.	1.4	79
27	Mechanism of 2-Deoxy-d-glucose Inhibition of Cell-Wall Polysaccharide and Glycoprotein Biosyntheses in Saccharomyces cerevisiae. FEBS Journal, 1975, 54, 459-467.	0.2	79
28	Mode of action of endo- \hat{l}^2 -1,4-xylanases of families 10 and 11 on acidic xylooligosaccharides. Journal of Biotechnology, 2006, 121, 338-345.	1.9	79
29	Enzymically Produced Cyclic alpha-1,3-Linked and alpha-1,6-Linked Oligosaccharides of d-Glucose. FEBS Journal, 1994, 226, 641-648.	0.2	78
30	Studies of the cellulolytic system of the filamentous fungus <i>Trichoderma reesei</i> QM 9414. Substrate specificity and transfer activity of endoglucanase I. Biochemical Journal, 1990, 270, 251-256.	1.7	77
31	Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882. Carbohydrate Research, 1998, 306, 445-455.	1.1	77
32	Effect of 2-Deoxyglucose on Cell Wall Formation in <i>Saccharomyces cerevisiae</i> and Its Relation to Cell Growth Inhibition. Journal of Bacteriology, 1971, 107, 121-129.	1.0	74
33	Structural basis for substrate recognition by <i>Erwiniaâ€fchrysanthemi</i> FEBS Journal, 2011, 278, 2105-2116.	2.2	71
34	Purification and characterization of a Fusarium oxysporum feruloyl esterase (FoFAE-I) catalysing transesterification of phenolic acid esters. Enzyme and Microbial Technology, 2003, 33, 729-737.	1.6	68
35	A novel family of hemicellulolytic αâ€glucuronidase. FEBS Letters, 2009, 583, 1457-1462.	1.3	68
36	Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile. Applied Microbiology and Biotechnology, 2004, 63, 686-690.	1.7	67

#	Article	IF	CITATIONS
37	Xylanase <scp>XYN</scp> Â <scp>IV</scp> from <i><scp>T</scp>richodermaÂreesei</i> showing exo―and endoâ€xylanase activity. FEBS Journal, 2013, 280, 285-301.	2.2	67
38	Cellulose- and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzyme and Microbial Technology, 1989, 11, 610-616.	1.6	66
39	Purification and characterization of \hat{l}_{\pm} -galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochimica Et Biophysica Acta - General Subjects, 2000, 1524, 27-37.	1.1	66
40	Antioxidant Potential of Hydroxycinnamic Acid Glycoside Esters. Journal of Agricultural and Food Chemistry, 2008, 56, 4797-4805.	2.4	66
41	Some Properties of Extracellular Acetylxylan Esterase Produced by the Yeast <i>Rhodotorula mucilaginosa</i> . Applied and Environmental Microbiology, 1987, 53, 2831-2834.	1.4	66
42	Lipase-catalysed preparation of acetates of 4-nitrophenyl \hat{l}^2 -d-xylopyranoside and their use in kinetic studies of acetyl migration. Carbohydrate Research, 2004, 339, 1353-1360.	1.1	64
43	Induction of cellulose- and xylan-degrading enzyme complex in the yeast Trichosporon cutaneum. Archives of Microbiology, 1984, 138, 371-376.	1.0	63
44	Induction and Inducers of Endo-1,4-beta-xylanase in the Yeast Cryptococcus albidus. FEBS Journal, 1980, 108, 323-329.	0.2	62
45	Purification and Properties of a Feruloyl Esterase Involved in Lignocellulose Degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 2003, 69, 5622-5626.	1.4	61
46	Utilization of Xylan by Yeasts and Its Conversion to Ethanol by <i>Pichia stipitis</i> Strains. Applied and Environmental Microbiology, 1986, 52, 320-324.	1.4	61
47	Novel Family of Carbohydrate Esterases, Based on Identification of the <i>Hypocrea jecorina </i> Acetyl Esterase Gene. Applied and Environmental Microbiology, 2008, 74, 7482-7489.	1.4	60
48	Mechanisms of Substrate Digestion by Endo-1,4-beta-Xylanase of Cryptococcus albidus. Lysozyme-Type Pattern of Action. FEBS Journal, 1981, 119, 565-571.	0.2	56
49	Mode of action of three endo- \hat{l}^2 -1,4-xylanases of Streptomyces lividans. BBA - Proteins and Proteomics, 1993, 1162, 246-254.	2.1	56
50	Inversion of configuration during hydrolysis of \hat{l}_{\pm} -1,4-galacturonidic linkage by threeAspergilluspolygalacturonases. FEBS Letters, 1996, 382, 249-255.	1.3	55
51	Novel media for detection of microbial producers of cellulase and xylanase. FEMS Microbiology Letters, 1985, 28, 137-140.	0.7	54
52	Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydrate Research, 2003, 338, 1881-1890.	1,1	54
53	Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme and Microbial Technology, 2016, 93-94, 79-91.	1.6	54
54	Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of \hat{l}^2 -d-xylopyranose and \hat{l} ±-l-arabinofuranose. Journal of Biotechnology, 2011, 151, 137-142.	1.9	52

#	Article	IF	CITATIONS
55	Two glucuronoyl esterases of Phanerochaete chrysosporium. Archives of Microbiology, 2009, 191, 133-140.	1.0	51
56	Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5075-5086.	1.1	51
57	Structure of the catalytic domain of glucuronoyl esterase Cip2 from <i>Hypocrea jecorina</i> Proteins: Structure, Function and Bioinformatics, 2011, 79, 2588-2592.	1.5	50
58	Enzymes of the yeast lytic system produced by Arthrobacter GJM-1 bacterium and their role in the lysis of yeast cell walls. Zeitschrift Fur Allgemeine Mikrobiologie, 1977, 17, 465-480.	0.0	50
59	The formation of guanosine diphosphate-2-deoxy-d-glucose in yeast. Biochimica Et Biophysica Acta - General Subjects, 1968, 156, 432-434.	1.1	48
60	Purification and Properties of Alternanase, a Novel Endo-alpha-1,3-alpha-1,6-d-Glucanase. FEBS Journal, 1994, 226, 633-639.	0.2	48
61	Analysis of DNA flanking the xlnB locus of Streptomyces lividans reveals genes encoding acetyl xylan esterase and the RNA component of ribonuclease P. Gene, 1995, 153, 105-109.	1.0	48
62	Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from <i>Sporotrichum thermophile </i> . FEMS Microbiology Letters, 2009, 296, 178-184.	0.7	47
63	Xylan-degrading activity in yeasts: Growth on xylose, xylan and hemicelluloses. Folia Microbiologica, 1978, 23, 366-371.	1.1	46
64	Hydrolysis of $(1,4)$ - \hat{l}^2 -D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of $(1,4)$ - \hat{l}^2 -D-mannan endohydrolase and \hat{l}^2 -D-mannosidase. Biochemical Journal, 2006, 399, 77-90.	1.7	46
65	Functional and structural characterization of a thermostable acetyl esterase from <i>Thermotoga maritima</i> . Proteins: Structure, Function and Bioinformatics, 2012, 80, 1545-1559.	1.5	46
66	<i>TrichodermaÂreesei </i> <scp>XYN</scp> Â <scp>VI</scp> – aÂnovel appendageâ€dependent eukaryotic glucuronoxylan hydrolase. FEBS Journal, 2014, 281, 3894-3903.	2.2	46
67	Cloning, expression and characterization of endoâ€Î²â€1,4â€mannanase from <i>Aspergillus fumigatus</i> in <i>Aspergillus sojae</i> and <i>Pichia pastoris</i> . Biotechnology Progress, 2009, 25, 271-276.	1.3	45
68	Inverting character of $\hat{l}\pm$ -glucuronidase A from Aspergillus tubingensis. Biochimica Et Biophysica Acta - General Subjects, 2000, 1474, 360-364.	1.1	44
69	X-ray structure determination and modeling of the cyclic tetrasaccharide 1â†'}. Carbohydrate Research, 2000, 329, 655-665.	1.1	43
70	Relatedness of Thermomyces lanuginosus strains producing a thermostable xylanase. Journal of Biotechnology, 2000, 81, 119-128.	1.9	43
71	Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. Journal of Biotechnology, 2003, 105, 95-104.	1.9	43
72	Metabolism of 2-deoxy-d-glucose by baker's yeast. Biochimica Et Biophysica Acta - Biomembranes, 1972, 255, 631-639.	1.4	42

#	Article	IF	Citations
73	Metabolism of 2-Deoxy-2-fluoro-d-[3H]glucose and 2-Deoxy-2-fluoro-d-[3H]mannose in Yeast and Chick-Embryo Cells. FEBS Journal, 1978, 87, 55-68.	0.2	42
74	A Chromogenic Substrate for a \hat{l}^2 -Xylosidase-Coupled Assay of \hat{l}_\pm -Glucuronidase. Analytical Biochemistry, 2000, 286, 289-294.	1.1	42
75	Comparison of catalytic properties of multiple \hat{l}^2 -glucosidases of Trichoderma reesei. Applied Microbiology and Biotechnology, 2016, 100, 4959-4968.	1.7	40
76	Lysis of <i>Saccharomyces cerevisiae</i> with 2-Deoxy-2-Fluoro- <scp>d</scp> -Glucose, an Inhibitor of the Cell Wall Glucan Synthesis. Journal of Bacteriology, 1973, 115, 1108-1120.	1.0	40
77	Substrate specificity of acetylxylan esterase from Schizophyllum commune: mode of action on acetylated carbohydrates. BBA - Proteins and Proteomics, 1996, 1298, 209-222.	2.1	39
78	Structural and Biochemical Characterization of Glycoside Hydrolase Family 79 \hat{l}^2 -Glucuronidase from Acidobacterium capsulatum. Journal of Biological Chemistry, 2012, 287, 14069-14077.	1.6	39
79	Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. Enzyme and Microbial Technology, 2007, 40, 1739-1747.	1.6	38
80	Fungal Glucuronoyl Esterases and Substrate Uronic Acid Recognition. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2483-2487.	0.6	38
81	Positional specifity of acetylxylan esterases on natural polysaccharide: An NMR study. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3365-3372.	1.1	38
82	Reaction pathways of substrate degradation by an acidic endo-1,4- \hat{l}^2 -xylanase of Aspergillus niger. BBA - Proteins and Proteomics, 1982, 704, 114-122.	2.1	37
83	Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. Journal of Bioscience and Bioengineering, 2019, 127, 222-230.	1.1	37
84	Synthetic esters recognized by glucuronoyl esterase from Schizophyllum commune. Archives of Microbiology, 2007, 188, 185-189.	1.0	36
85	Metabolism of 2-deoxy-D-glucose by baker's yeast. I. Isolation and identification of phosphorylated esters of 2-deoxy-D-glucose. Collection of Czechoslovak Chemical Communications, 1967, 32, 1588-1594.	1.0	36
86	Substrate specificity and mode of action of acetylxylan esterase from Streptomyces lividans. FEBS Letters, 1996, 396, 257-260.	1.3	35
87	Purification and characterization of two minor endo- \hat{l}^2 -1,4-xylanases of Schizophyllum commune. Enzyme and Microbial Technology, 2005, 36, 903-910.	1.6	35
88	Interaction of Concanavalin A with External Mannan-Proteins of Saccharomyces cerevisiae. Glycoprotein Nature of beta-Glucanases. FEBS Journal, 1976, 70, 75-81.	0.2	34
89	Effects of purified endo- \hat{l}^2 -1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. Journal of Biotechnology, 2000, 83, 231-244.	1.9	34
90	Carbohydrate esterases of family 2 are 6â€∢i>Oàê€deacetylases. FEBS Letters, 2010, 584, 543-548.	1.3	33

#	Article	IF	CITATIONS
91	Novel inducers of the xylan-degrading enzyme system of Cryptococcus albidus. Journal of Bacteriology, 1984, 160, 408-412.	1.0	33
92	Action of acetylxylan esterase from Trichoderma reesei on acetylated methyl glycosides. FEBS Letters, 1997, 420, 121-124.	1.3	32
93	The α-Glucuronidase, GlcA67A, of Cellvibrio japonicus Utilizes the Carboxylate and Methyl Groups of Aldobiouronic Acid as Important Substrate Recognition Determinants. Journal of Biological Chemistry, 2003, 278, 20286-20292.	1.6	32
94	Lysis of intact yeast cells and isolated cell walls by an inducible enzyme system of Arthrobacter GJM-1. Zeitschrift Fur Allgemeine Mikrobiologie, 1977, 17, 391-402.	0.0	32
95	Uridine diphosphate 2-deoxyglucose. Biochimica Et Biophysica Acta - General Subjects, 1975, 381, 301-307.	1.1	29
96	Inducible beta-Xyloside Permease as a Constituent of the Xylan-Degrading Enzyme System of the Yeast Cryptococcus albidus. FEBS Journal, 1980, 112, 367-373.	0.2	29
97	Biotechnological Potential and Production of Xylanolytic Systems Free of Cellulases. ACS Symposium Series, 1991, , 408-416.	0.5	29
98	Simultaneous production of endo- \hat{l}^2 -1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. Journal of Biotechnology, 2008, 137, 34-43.	1.9	29
99	Xylanases of glycoside hydrolase family 30 – An overview. Biotechnology Advances, 2021, 47, 107704.	6.0	29
100	The formation of uridine diphosphate-2-deoxy-d-glucose in yeast. Biochimica Et Biophysica Acta - General Subjects, 1966, 121, 213-214.	1.1	28
101	Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnology Advances, 2022, 59, 107981.	6.0	28
102	Differentiation of feruloyl esterases on synthetic substrates in \hat{l}_{\pm} -arabinofuranosidase-coupled and ultraviolet-spectrophotometric assays. Analytical Biochemistry, 2002, 311, 68-75.	1.1	27
103	Glucuronoyl esterases are active on the polymeric substrate methyl esterified glucuronoxylan. FEBS Letters, 2015, 589, 2334-2339.	1.3	27
104	The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 ls Active on Branched Xylooligosaccharides. Applied and Environmental Microbiology, 2016, 82, 5116-5124.	1.4	27
105	Mode of action of acetylxylan esterase from Streptomyces lividans: a study with deoxy and deoxy-fluoro analogues of acetylated methyl \hat{I}^2 -d-xylopyranoside. Biochimica Et Biophysica Acta - General Subjects, 2003, 1622, 82-88.	1.1	26
106	Substrate and positional specificity of feruloyl esterases for monoferuloylated and monoacetylated 4-nitrophenyl glycosides. Journal of Biotechnology, 2007, 127, 235-243.	1.9	26
107	Metabolism of 2-deoxy-d-glucose by baker's yeast. VI. A study on cell wall mannan. Biochimica Et Biophysica Acta - Biomembranes, 1974, 352, 268-274.	1.4	25
108	Complex Reaction Pathway of Aryl beta-Xyloside Degradation by beta-Xylanase of Cryptococcus albidus. FEBS Journal, 1980, 112, 375-381.	0.2	25

#	Article	IF	CITATIONS
109	Catalytic properties of the endoxylanase I from Thermoascus aurantiacus. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 491-501.	1.8	25
110	Two efficient ways to 2-O- and 5-O-feruloylated 4-nitrophenyl \hat{l}_{\pm} -l-arabinofuranosides as substrates for differentiation of feruloyl esterases. Tetrahedron Letters, 2003, 44, 1671-1673.	0.7	25
111	Enzyme-coupled assay of acetylxylan esterases on monoacetylated 4-nitrophenyl \hat{l}^2 -d-xylopyranosides. Analytical Biochemistry, 2004, 332, 109-115.	1.1	25
112	Structure of peanut shell xylan and its conversion to oligosaccharides. Process Biochemistry, 2018, 72, 124-129.	1.8	24
113	Transglycosylic reactions of nucleotides of 2-deoxy-sugars II. 2-deoxyglucose incorporation into glycogen. Biochimica Et Biophysica Acta - General Subjects, 1971, 252, 432-438.	1.1	23
114	Positional isomers of thioxylobiose, their synthesis and inducing ability for d-xylan-degrading enzymes in the yeast cryptococcus albidus. Carbohydrate Research, 1992, 228, 47-64.	1.1	23
115	Production of extracellular \hat{l}^2 -mannanases by yeasts and yeast-like microorganisms. Folia Microbiologica, 1996, 41, 43-47.	1.1	23
116	Comparison of Catalytic Properties of Acetyl Xylan Esterases from Three Carbohydrate Esterase Families. ACS Symposium Series, 2003, , 211-229.	0.5	23
117	Unique mode of acetylation of oligosaccharides in aqueous two-phase system by Trichoderma reesei acetyl esterase. Journal of Molecular Catalysis B: Enzymatic, 2005, 37, 72-78.	1.8	23
118	Inverting character of family GH115 αâ€glucuronidases. FEBS Letters, 2010, 584, 4063-4068.	1.3	23
119	Changes in the rate of synthesis of wall polysaccharides during the cell cycle of yeast. Archives of Microbiology, 1978, 119, 213-214.	1.0	22
120	Induction and Inducers of the Pectolytic System in Aureobasidium pullulans. Current Microbiology, 1996, 33, 6-10.	1.0	22
121	Synthesis and Hydrolysis of 1,3â€Î²â€Xylosidic Linkages by Endoâ€1,4â€Î²â€xylanase of <i>Cryptococcus albidus FEBS Journal, 1983, 129, 645-651.</i>	<¦i>≥ 6.2	22
122	Cell wall formation in yeast. Archives of Microbiology, 1973, 94, 365-371.	1.0	21
123	Stereochemistry of the hydrolysis of glycosidic linkage by endo- \hat{l}^2 -1,4-xylanases of Trichoderma reesei. FEBS Letters, 1994, 356, 137-140.	1.3	21
124	Recent Progress in Understanding the Mode of Action of Acetylxylan Esterases. Journal of Applied Glycoscience (1999), 2014, 61, 35-44.	0.3	21
125	Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 516-525.	1.1	21
126	Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates. Journal of Biotechnology, 2016, 233, 228-236.	1.9	21

#	Article	IF	Citations
127	A novel GH30 xylobiohydrolase from Acremonium alcalophilum releasing xylobiose from the non-reducing end. Enzyme and Microbial Technology, 2020, 134, 109484.	1.6	21
128	\hat{l}^2 -xylosidases and a nonspecific wall-bound \hat{l}^2 -glucosidase of the yeast cryptococcus albidus. Biochimica Et Biophysica Acta - General Subjects, 1982, 716, 391-399.	1.1	20
129	The role of the glucuronoxylan carboxyl groups in the action of endoxylanases of three glycoside hydrolase families: A study with two substrate mutants. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2246-2255.	1.1	20
130	Glucuronoyl esterases: diversity, properties and biotechnological potential. A review. Critical Reviews in Biotechnology, 2018, 38, 1121-1136.	5.1	20
131	Xylan from bambara and cowpea biomass and their structural elucidation. International Journal of Biological Macromolecules, 2019, 132, 987-993.	3.6	20
132	Incorporation of 2-deoxy-d-glucose into glycogen. Biochimica Et Biophysica Acta - General Subjects, 1968, 158, 487-488.	1.1	19
133	Wall mannan of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 1975, 404, 1-6.	1.1	19
134	Xylanase of Cryptococcus albidus. Methods in Enzymology, 1988, 160, 638-648.	0.4	19
135	Î ² -Mannanolytic system of Aureobasidium pullulans. Archives of Microbiology, 1997, 167, 350-355.	1.0	19
136	Deoxy and deoxyfluoro analogues of acetylated methyl β-d-xylopyranoside––substrates for acetylxylan esterases. Carbohydrate Research, 2004, 339, 2101-2110.	1.1	19
137	Glycosylation of internal sugar residues of oligosaccharides catalyzed by α-galactosidase from. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 206-216.	1.1	19
138	Functional Cloning and Expression of the <i>Schizophyllum commune</i> Glucuronoyl Esterase Gene and Characterization of the Recombinant Enzyme. Biotechnology Research International, 2012, 2012, 1-7.	1.4	19
139	Action of different types of endoxylanases on eucalyptus xylan in situ. Applied Microbiology and Biotechnology, 2018, 102, 1725-1736.	1.7	19
140	The active site of an acidic endo-1,4- \hat{l}^2 -xylanase of Aspergillus niger. BBA - Proteins and Proteomics, 1983, 743, 155-161.	2.1	18
141	Microbial Glucuronoyl Esterases: 10 Years after Discovery. Applied and Environmental Microbiology, 2016, 82, 7014-7018.	1.4	18
142	Metabolism of 2-deoxy-D-glucose by Baker's yeast. II. Formation of 2-deoxy-D-gluconic acid. Collection of Czechoslovak Chemical Communications, 1968, 33, 1165-1173.	1.0	18
143	Enzymic α-galactosylation of a cyclic glucotetrasaccharide derived from alternan. Carbohydrate Research, 2001, 332, 299-303.	1.1	17
144	The vicinal hydroxyl group is prerequisite for metal activation of Clostridium thermocellum acetylxylan esterase. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 565-570.	1.1	17

#	Article	IF	Citations
145	Glucuronoxylan 3-O-acetylated on uronic acid-substituted xylopyranosyl residues and its hydrolysis by GH10, GH11 and GH30 endoxylanases. Carbohydrate Polymers, 2019, 205, 217-224.	5.1	17
146	New search for pectolytic yeasts. Folia Microbiologica, 1994, 39, 485-488.	1.1	16
147	Redistribution of acetyl groups on the non-reducing end xylopyranosyl residues and their removal by xylan deacetylases. Applied Microbiology and Biotechnology, 2015, 99, 3865-3873.	1.7	16
148	A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan. Applied Microbiology and Biotechnology, 2015, 99, 10515-10526.	1.7	16
149	Secretion of Î ² -glucanase bySaccharomyces cerevisiaeprotoplasts. FEBS Letters, 1972, 23, 153-156.	1.3	15
150	A new chromogenic substrate for assay and detection of \hat{l}_{\pm} -amylase. Analytical Biochemistry, 1988, 172, 176-179.	1.1	15
151	A common access to 2- and 3-substituted methyl \hat{l}^2 -d-xylopyranosides. Tetrahedron Letters, 2001, 42, 9065-9067.	0.7	15
152	Transacetylations to carbohydrates catalyzed by acetylxylan esterase in the presence of organic solvent. Biochimica Et Biophysica Acta - General Subjects, 2003, 1623, 62-71.	1.1	15
153	An alternative approach for the synthesis of fluorogenic substrates of endo- \hat{l}^2 -(1 \hat{a} †'4)-xylanases and some applications. Carbohydrate Research, 2008, 343, 541-548.	1.1	14
154	Enzymatic acylation of flavonoid glycosides by a carbohydrate esterase of family 16. Biotechnology Letters, 2014, 36, 2249-2255.	1.1	14
155	Positional specificity of Flavobacterium johnsoniae acetylxylan esterase and acetyl group migration on xylan main chain. Carbohydrate Polymers, 2020, 232, 115783.	5.1	14
156	Chromogenic substrate for endo-polygalacturonase detection in gels. Journal of Chromatography A, 1992, 603, 243-246.	1.8	13
157	The acetates of p-nitrophenyl α-l-arabinofuranoside—Regioselective preparation by action of lipases. Bioorganic and Medicinal Chemistry, 2006, 14, 1805-1810.	1.4	13
158	Transglycosylic reactions of nucleotides of 2-deoxy-sugars. Biochimica Et Biophysica Acta - General Subjects, 1968, 165, 63-67.	1.1	12
159	Growth of Aureobasidium pullulans on waste water hemicelluloses. Folia Microbiologica, 1979, 24, 328-333.	1.1	12
160	Disaccharides permeases: constituents of xylanolytic and mannanolytic systems of Aureobasidium pullulans. Biochimica Et Biophysica Acta - General Subjects, 1998, 1425, 560-566.	1.1	12
161	Recent progress in the assays of xylanolytic enzymes. Journal of the Science of Food and Agriculture, 2006, 86, 1636-1647.	1.7	12
162	Endo-Î ² -1,4-xylanase inhibitors in leaves and roots of germinated maize. Journal of Cereal Science, 2008, 48, 27-32.	1.8	12

#	Article	IF	CITATIONS
163	Preparation of regioselectively feruloylated p-nitrophenyl α-l-arabinofuranosides and β-d-xylopyranosides—convenient substrates for study of feruloyl esterase specificity. Carbohydrate Research, 2010, 345, 1094-1098.	1.1	12
164	Xylosyl transfer to cellobiose catalysed by an endo- $(1\hat{a}^{\dagger},4)$ - \hat{l}^2 -d-xylanase of Cryptococcus albidus. Carbohydrate Research, 1983, 123, 97-107.	1.1	11
165	Crystallization and preliminary crystallographic analysis of the glycoside hydrolase family 115 \hat{l} ±-glucuronidase from \hat{l} 1-Streptomyces pristinaespiralis \hat{l} 1 Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 68-71.	0.7	11
166	Glucuronoxylan recognition by GH 30 xylanases: A study with enzyme and substrate variants. Archives of Biochemistry and Biophysics, 2018, 643, 42-49.	1.4	11
167	A novel bacterial GH30 xylobiohydrolase from Hungateiclostridium clariflavum. Applied Microbiology and Biotechnology, 2021, 105, 185-195.	1.7	11
168	A method for preparing lower [U-14C]-labelled (1â†'4)-β-d-xylo-oligosaccharides. Carbohydrate Research, 1981, 93, 300-303.	1.1	10
169	Cloning and heterologous expression of the extracellular alpha-galactosidase from Aspergillus fumigatus in Aspergillus sojae under the control of gpdA promoter. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 146-149.	1.8	10
170	Glycosidic bond rearrangements in isomeric xylobioses by yeast xylan-degrading enzymes. FEBS Letters, 1984, 178, 323-326.	1.3	9
171	Chitin structures of the cell walls of synchronously grown virgin cells of Saccharomyces cerevisiae. Zeitschrift Fur Allgemeine Mikrobiologie, 1979, 19, 357-362.	0.0	9
172	Isolation and Characterization of Microorganisms with Alternan Hydrolytic Activity. Current Microbiology, 1996, 32, 343-348.	1.0	8
173	Aryl-Glycosidase Activities in Germinating Maize. Cereal Chemistry, 2003, 80, 144-147.	1.1	8
174	Î ² -Glucuronidase-coupled assays of glucuronoyl esterases. Analytical Biochemistry, 2016, 510, 114-119.	1.1	8
175	A simple enzymatic synthesis of 4-nitrophenyl \hat{l}^2 -1,4-d-xylobioside, a chromogenic substrate for assay and differentiation of endoxylanases. Journal of Biotechnology, 2007, 128, 576-586.	1.9	7
176	Non-Specific GH30_7 Endo-β-1,4-xylanase from Talaromyces leycettanus. Molecules, 2021, 26, 4614.	1.7	7
177	Diversity of Microbial Endo-β-1,4-Xylanases. ACS Symposium Series, 2003, , 361-380.	0.5	5
178	Hydrolysis of (1â†'3)- and (1â†'2)-β-d-xylosidic linkages by an endo-(1â†'4)-β-d-xylanase of Cryptococcus albidus. Carbohydrate Research, 1990, 206, 251-256.	1.1	4
179	An efficient chemoenzymatic route to methyl 4-O-benzyl-2,3-anhydro-Î ² -d-lyxopyranoside from methyl Î ² -d-xylopyranoside. Carbohydrate Research, 2004, 339, 425-428.	1.1	4
180	Microbial Hemicellulolytic Carbohydrate Esterases. , 2005, , 21-1-21-24.		4

#	Article	IF	Citations
181	Utilization by yeasts of D-glucarate, galactarate, and L-tartarate is uncommon and occurs in strains of Cryptococcus and Trichosporon. Canadian Journal of Microbiology, 1990, 36, 856-858.	0.8	3
182	Characterization of Acetylxylan Esterase from White-Rot Fungus <i>Irpex lacteus</i> . Journal of Applied Glycoscience (1999), 2019, 66, 131-137.	0.3	3
183	Differentiation of Glycanases of Microbial Cellulolytic Systems Using Chromogenic and Fluorogenic Substrates., 1987,, 187-192.		3
184	Xylanolytic Enzymes. , 2002, , .		3
185	Determination of intracellular 2-deoxy-d-glucose 6-phosphate and uridine diphosphate-2-deoxy-d-glucose. Analytical Biochemistry, 1967, 20, 387-393.	1.1	2
186	Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain fromHypocrea jecorina. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 255-257.	0.7	2
187	Dictionary of Carbohydrates. Edited by P. M. Collins. Second Edition. Chemical Papers, 2006, 60, .	1.0	1
188	Catalytic Diversity of GH30 Xylanases. Molecules, 2021, 26, 4528.	1.7	1
189	Production of Cellulase byTrichoderma reesei on Waste Cellophane. Folia Microbiologica, 1985, 30, 479-484.	1.1	0
190	Stereochemistry of hydrolysis of glycosidic linkage by three Aspergillus polygalacturonases. Progress in Biotechnology, 1996, , 705-710.	0.2	0
191	S3-5 New sight on catalytic properties of acetylxylan esterases(Overseas Invited Presentation). Bulletin of Applied Glycoscience, 2013, 3, B53.	0.0	0
192	A comparison of the toxic effects of 2-deoxy-D-glucose and 2-deoxy-2-fluoro-D-hexoses on Saccharomyces cerevisiae cells and protoplasts. Zeitschrift Fur Allgemeine Mikrobiologie, 1981, 21, 489-497.	0.0	0
193	[Review: Symposium on Applied Glycoscience] Function of β-Glucosidases in Cellulase Induction of <i>Trichoderma reesei</i> . Bulletin of Applied Glycoscience, 2016, 6, 96-102.	0.0	0