Jiayu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192623/publications.pdf

Version: 2024-02-01

			101543	88630
	71	11,234	36	70
	papers	citations	h-index	g-index
ı				
	71	71	71	6372
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Science Bulletin, 2022, 67, 171-177.	9.0	20
2	Effect of Molecular Symmetry on Fusedâ€Ring Electron Acceptors. Solar Rrl, 2022, 6, 2100797.	5.8	3
3	Pushing the Efficiency of High Openâ€Circuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Advanced Science, 2022, 9, e2200578.	11.2	51
4	From Perylene Diimide Polymers to <scp>Fusedâ€Ring</scp> Electron Acceptors: A <scp>15â€Year</scp> Exploration Journey of Nonfullerene Acceptors. Chinese Journal of Chemistry, 2022, 40, 1592-1607.	4.9	25
5	Reducing Energy Disorder in Perovskite Solar Cells by Chelation. Journal of the American Chemical Society, 2022, 144, 5400-5410.	13.7	72
6	Fused-Ring Electron Acceptors for Photovoltaics and Beyond. Accounts of Chemical Research, 2021, 54, 132-143.	15.6	264
7	Effects of π-Bridge on Fused-Ring Electron Acceptor Dimers. ACS Applied Polymer Materials, 2021, 3, 23-29.	4.4	9
8	Enhancing photovoltaic performance via aggregation dynamics control in fusedâ€ring electron acceptor. Aggregate, 2021, 2, e29.	9.9	10
9	A Novel, Weakly Nâ€Doped Cathodeâ€Modifying Layer in Organic Solar Cells. Energy Technology, 2021, 9, 2100281.	3.8	10
10	Pyrrolo[3,2-b]pyrrole-based fused-ring electron acceptors with strong near-infrared absorption beyond 1000Anm. Dyes and Pigments, 2021, 195, 109705.	3.7	4
11	Isomeric Effect in Unidirectionally Extended Fused-Ring Electron Acceptors. Chemistry of Materials, 2021, 33, 441-451.	6.7	6
12	Film-depth-dependent crystallinity for light transmission and charge transport in semitransparent organic solar cells. Journal of Materials Chemistry A, 2020, 8, 401-411.	10.3	45
13	Charge separation boosts exciton diffusion in fused ring electron acceptors. Journal of Materials Chemistry A, 2020, 8, 23304-23312.	10.3	18
14	Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. ACS Applied Materials & Star-Shaped Acceptor. ACS Applied Materials & Star-Shaped Acceptor.	8.0	16
15	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	11.9	23
16	Effects of alkoxylation position on fused-ring electron acceptors. Journal of Materials Chemistry C, 2020, 8, 15128-15134.	5 . 5	8
17	Highâ€Efficiency Perovskite Quantum Dot Hybrid Nonfullerene Organic Solar Cells with Nearâ€Zero Driving Force. Advanced Materials, 2020, 32, e2002066.	21.0	46
18	An Alkoxyâ€Solubilizing Decacyclic Electron Acceptor for Efficient Ecofriendly Asâ€Cast Bladeâ€Coated Organic Solar Cells. Solar Rrl, 2020, 4, 2000108.	5.8	11

#	Article	IF	CITATIONS
19	Effects of linking units on fused-ring electron acceptor dimers. Journal of Materials Chemistry A, 2020, 8, 13735-13741.	10.3	8
20	Enhancing Performance of Fused-Ring Electron Acceptor Using Pyrrole Instead of Thiophene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14029-14036.	8.0	25
21	Comparison of Fused-Ring Electron Acceptors with One- and Multidimensional Conformations. ACS Applied Materials & Description (2008) 12, 23976-23983.	8.0	10
22	A thiophene-fused benzotriazole unit as a "π-bridge―in A-π-D-π-A type acceptor to achieve more balanced JSC and VOC for OSCs. Organic Electronics, 2020, 82, 105705.	2.6	10
23	Constructing Highâ€Performance Organic Photovoltaics via Emerging Nonâ€Fullerene Acceptors and Tandemâ€Junction Structure. Advanced Energy Materials, 2020, 10, 2000746.	19.5	41
24	Facile synthesis of high-performance nonfullerene acceptor isomers <i>via</i> a one stone two birds strategy. Journal of Materials Chemistry A, 2019, 7, 20667-20674.	10.3	19
25	Enhancing the ⟨i⟩J⟨ i⟩ ⟨sub⟩ SC⟨ sub⟩ of P3HT-Based OSCs via a Thiophene-Fused Aromatic Heterocycle as a "΀-Bridge―for Aâ^'Ï€â€"Dâ^'Ï€â€"A-Type Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 26005-26016.	8.0	19
26	Black Phosphorous Quantum Dots Sandwiched Organic Solar Cells. Small, 2019, 15, e1903977.	10.0	41
27	Fused octacyclic electron acceptor isomers for organic solar cells. Journal of Materials Chemistry A, 2019, 7, 21432-21437.	10.3	26
28	Pairing 1D/2D-conjugation donors/acceptors towards high-performance organic solar cells. Materials Chemistry Frontiers, 2019, 3, 276-283.	5.9	9
29	Rylene Diimide Electron Acceptors for Organic Solar Cells. Trends in Chemistry, 2019, 1, 869-881.	8.5	66
30	The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Research, 2019, 12, 2400-2405.	10.4	28
31	Fused thienobenzene-thienothiophene electron acceptors for organic solar cells. Journal of Energy Chemistry, 2019, 37, 58-65.	12.9	7
32	Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 275-283.	4.9	3
33	Fused Tris(thienothiophene)â€Based Electron Acceptor with Strong Nearâ€Infrared Absorption for Highâ€Performance Asâ€Cast Solar Cells. Advanced Materials, 2018, 30, 1705969.	21.0	340
34	Fusedâ€Ring Electron Acceptor ITICâ€Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Advanced Energy Materials, 2018, 8, 1703399.	19.5	112
35	Bayâ€annulated indigo based nearâ€infrared sensitive polymer for organic solar cells. Journal of Polymer Science Part A, 2018, 56, 213-220.	2.3	6
36	Naphthodithiopheneâ€Based Nonfullerene Acceptor for Highâ€Performance Organic Photovoltaics: Effect of Extended Conjugation. Advanced Materials, 2018, 30, 1704713.	21.0	199

#	Article	IF	CITATIONS
37	Enhancing the performance of a fused-ring electron acceptor <i>via</i> extending benzene to naphthalene. Journal of Materials Chemistry C, 2018, 6, 66-71.	5.5	38
38	High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.	10.3	31
39	Unique Energy Alignments of a Ternary Material System toward Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1801501.	21.0	116
40	Hidden Structure Ordering Along Backbone of Fusedâ€Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction. Advanced Materials, 2018, 30, e1802888.	21.0	212
41	Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. Journal of the American Chemical Society, 2018, 140, 9140-9147.	13.7	361
42	Enhancing the performance of non-fullerene organic solar cells <i>via</i> end group engineering of fused-ring electron acceptors. Journal of Materials Chemistry A, 2018, 6, 16638-16644.	10.3	47
43	Alkoxy-Induced Near-Infrared Sensitive Electron Acceptor for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 4150-4156.	6.7	79
44	Realizing Small Energy Loss of 0.55 eV, High Openâ€Circuit Voltage >1 V and High Efficiency >10% in Fullereneâ€Free Polymer Solar Cells via Energy Driver. Advanced Materials, 2017, 29, 1605216.	21.0	230
45	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	21.0	629
46	Highâ∈Mobility pâ€Type Organic Semiconducting Interlayer Enhancing Efficiency and Stability of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700025.	11.2	36
47	Fused Hexacyclic Nonfullerene Acceptor with Strong Nearâ€Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Advanced Materials, 2017, 29, 1701308.	21.0	364
48	Ï€â€Conjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604545.	21.0	543
49	Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes and Pigments, 2017, 139, 627-634.	3.7	48
50	Enhancing Performance of Nonfullerene Acceptors via Sideâ€Chain Conjugation Strategy. Advanced Materials, 2017, 29, 1702125.	21.0	249
51	Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.	5.8	21
52	Nonfullerene acceptor with strong near-infrared absorption for polymer solar cells. Dyes and Pigments, 2017, 137, 553-559.	3.7	14
53	Spiro[fluorene-9,9′-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability. Materials Chemistry Frontiers, 2017, 1, 100-110.	5.9	84
54	Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Advanced Materials, 2016, 28, 8021-8028.	21.0	207

#	Article	IF	Citations
55	Structure Evolution of Oligomer Fusedâ€Ring Electron Acceptors toward High Efficiency of Asâ€Cast Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600854.	19.5	152
56	Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chemical Reviews, 2016, 116, 14675-14725.	47.7	418
57	Influence of Thiophene Moiety on the Excited State Properties of Push–Pull Chromophores. Journal of Physical Chemistry C, 2016, 120, 13922-13930.	3.1	14
58	Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments, 2016, 128, 226-234.	3.7	18
59	A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Journal of the American Chemical Society, 2016, 138, 2973-2976.	13.7	885
60	Monodisperse macromolecules based on benzodithiophene and diketopyrrolopyrrole with strong NIR absorption and high mobility. Journal of Materials Chemistry C, 2016, 4, 3781-3791.	5 . 5	22
61	Efficient fullerene-free organic solar cells based on fused-ring oligomer molecules. Journal of Materials Chemistry A, 2016, 4, 1486-1494.	10.3	48
62	An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials, 2015, 27, 1170-1174.	21.0	3,365
63	Spirobifluorene-based acceptors for polymer solar cells: Effect of isomers. Dyes and Pigments, 2015, 123, 16-25.	3.7	16
64	Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length. Journal of Materials Chemistry A, 2015, 3, 13000-13010.	10.3	45
65	Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolylmethylenemalononitrile for polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20758-20766.	10.3	88
66	An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. Journal of Materials Chemistry A, 2015, 3, 1910-1914.	10.3	137
67	High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8, 610-616.	30.8	587
68	Solar Cells: A Starâ€Shaped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5224-5224.	21.0	3
69	A Twisted Dimeric Perylene Diimide Electron Acceptor for Efficient Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400420.	19.5	126
70	A Starâ€Shaped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells. Advanced Materials, 2014, 26, 5137-5142.	21.0	390
71	CHAPTER 5. Fullerenes and New Acceptors for Organic Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 154-181.	0.2	1