Grit Kunert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192239/publications.pdf

Version: 2024-02-01

257450 243625 2,115 48 24 44 citations h-index g-index papers 51 51 51 2517 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Biosynthesis and antifungal activity of fungus-induced <i>O</i> -methylated flavonoids in maize. Plant Physiology, 2022, 188, 167-190.	4.8	32
2	Species-Specific and Distance-Dependent Dispersive Behaviour of Forisomes in Different Legume Species. International Journal of Molecular Sciences, 2021, 22, 492.	4.1	6
3	Glucosinolate Abundance and Composition in Brassicaceae Influence Sequestration in a Specialist Flea Beetle. Journal of Chemical Ecology, 2020, 46, 186-197.	1.8	19
4	Pectin Digestion in Herbivorous Beetles: Impact of Pseudoenzymes Exceeds That of Their Active Counterparts. Frontiers in Physiology, 2019, 10, 685.	2.8	13
5	Inverse resource allocation between vision and olfaction across the genus Drosophila. Nature Communications, 2019, 10, 1162.	12.8	80
6	Untargeted Metabolomics Approach Reveals Differences in Host Plant Chemistry Before and After Infestation With Different Pea Aphid Host Races. Frontiers in Plant Science, 2019, 10, 188.	3.6	50
7	Biosynthetic and Functional Color–Scent Associations in Flowers of <i>Papaver nudicaule</i> and Their Impact on Pollinators. ChemBioChem, 2018, 19, 1553-1562.	2.6	8
8	One Pathway Is Not Enough: The Cabbage Stem Flea Beetle Psylliodes chrysocephala Uses Multiple Strategies to Overcome the Glucosinolate-Myrosinase Defense in Its Host Plants. Frontiers in Plant Science, 2018, 9, 1754.	3.6	30
9	Dealing with food shortage: larval dispersal behaviour and survival on nonâ€prey food of the hoverfly <i>Ecological Entomology, 2018, 43, 578-590.</i>	2.2	7
10	Cellulose degradation in <i>Gastrophysa viridula</i> (Coleoptera: Chrysomelidae): functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. Insect Molecular Biology, 2018, 27, 633-650.	2.0	20
11	Barley yellow dwarf virus Infection Leads to Higher Chemical Defense Signals and Lower Electrophysiological Reactions in Susceptible Compared to Tolerant Barley Genotypes. Frontiers in Plant Science, 2018, 9, 145.	3.6	17
12	Comparison of intracellular location and stimulus reaction times of forisomes in sieve tubes of four legume species. Plant Signaling and Behavior, 2018, 13, 1-5.	2.4	1
13	Idesia polycarpa (Salicaceae) leaf constituents and their toxic effect on Cerura vinula and Lymantria dispar (Lepidoptera) larvae. Phytochemistry, 2017, 143, 170-179.	2.9	14
14	Sex ratio of mirid populations shifts in response to hostplant coâ€infestation or altered cytokinin signaling. Journal of Integrative Plant Biology, 2017, 59, 44-59.	8.5	14
15	How Glucosinolates Affect Generalist Lepidopteran Larvae: Growth, Development and Glucosinolate Metabolism. Frontiers in Plant Science, 2017, 8, 1995.	3.6	93
16	Evolution and functional characterization of CAZymes belonging to subfamily 10 of glycoside hydrolase family 5 (GH5_10) in two species of phytophagous beetles. PLoS ONE, 2017, 12, e0184305.	2.5	29
17	Optimization of Agroinfiltration in Pisum sativum Provides a New Tool for Studying the Salivary Protein Functions in the Pea Aphid Complex. Frontiers in Plant Science, 2016, 7, 1171.	3.6	25
18	Modulation of Legume Defense Signaling Pathways by Native and Non-native Pea Aphid Clones. Frontiers in Plant Science, 2016, 07, 1872.	3.6	26

#	Article	IF	Citations
19	Shifting <i>Nicotiana attenuata</i> 's diurnal rhythm does not alter its resistance to the specialist herbivore <i>Manduca sexta</i> . Journal of Integrative Plant Biology, 2016, 58, 656-668.	8.5	13
20	Hoverfly preference for high honeydew amounts creates enemyâ€free space for aphids colonizing novel host plants. Journal of Animal Ecology, 2016, 85, 1286-1297.	2.8	7
21	Is there any evidence that aphid alarm pheromones work as prey and host finding kairomones for natural enemies?. Ecological Entomology, 2016, 41, 1-12.	2.2	22
22	Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications, 2016, 7, 12530.	12.8	27
23	Enemy-free space promotes maintenance of host races in an aphid species. Oecologia, 2016, 181, 659-672.	2.0	11
24	Attachment forces of pea aphids (<i><scp>A</scp>cyrthosiphon pisum</i>) on different legume species. Ecological Entomology, 2015, 40, 732-740.	2.2	23
25	Feeding on Leaves of the Glucosinolate Transporter Mutant gtr1gtr2 Reduces Fitness of Myzus persicae. Journal of Chemical Ecology, 2015, 41, 975-984.	1.8	32
26	Analysis of volatiles from Picea abies triggered by below-ground interactions. Environmental and Experimental Botany, 2015, 110, 56-61.	4.2	13
27	<i>Phyllotreta striolata</i> flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7349-7354.	7.1	116
28	To Feed or Not to Feed: Plant Factors Located in the Epidermis, Mesophyll, and Sieve Elements Influence Pea Aphid's Ability to Feed on Legume Species. PLoS ONE, 2013, 8, e75298.	2.5	60
29	Entomopathogenic fungi stimulate transgenerational wing induction in pea aphids, <i>Acyrthosiphon pisum</i> (Hemiptera: Aphididae). Ecological Entomology, 2012, 37, 75-82.	2.2	20
30	The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biology, 2012, 12, 84.	3.6	66
31	The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases. Plant Molecular Biology, 2012, 78, 599-615.	3.9	82
32	Differences in defensive behaviour between hostâ€adapted races of the pea aphid. Ecological Entomology, 2010, 35, 147-154.	2.2	26
33	Constitutive emission of the aphid alarm pheromone, (E)- \hat{l}^2 -farnesene, from plants does not serve as a direct defense against aphids. BMC Ecology, 2010, 10, 23.	3.0	46
34	Ecological Costs of Alarm Signalling in Aphids. , 2010, , 171-181.		6
35	Aphid Wing Induction and Ecological Costs of Alarm Pheromone Emission under Field Conditions. PLoS ONE, 2010, 5, e11188.	2.5	41
36	Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Current Opinion in Plant Biology, 2009, 12, 479-485.	7.1	387

#	Article	IF	CITATION
37	Real-Time Analysis of Alarm Pheromone Emission by the Pea Aphid (Acyrthosiphon Pisum) Under Predation. Journal of Chemical Ecology, 2008, 34, 76-81.	1.8	42
38	Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response. Journal of Chemical Ecology, 2008, 34, 508-522.	1.8	83
39	Do Aphid Colonies Amplify their Emission of Alarm Pheromone?. Journal of Chemical Ecology, 2008, 34, 1149-1152.	1.8	33
40	Alarm pheromone emission by pea aphid, <i>AcyrthosiphonÂpisum</i> , clones under predation by lacewing larvae. Entomologia Experimentalis Et Applicata, 2008, 128, 403-409.	1.4	18
41	Juvenile hormone titres and winged offspring production do not correlate in the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 2008, 54, 1332-1336.	2.0	25
42	The influence of natural enemies on wing induction in <i>Aphis fabae</i> and <i>Megoura viciae</i> (Hemiptera: Aphididae). Bulletin of Entomological Research, 2008, 98, 59-62.	1.0	20
43	Chemical cues mediating aphid location by natural enemies. European Journal of Entomology, 2008, 105, 797-806.	1.2	107
44	Density dependence of the alarm pheromone effect in pea aphids, Acyrthosiphon pisum (Sternorrhyncha: Aphididae). European Journal of Entomology, 2007, 104, 47-50.	1.2	17
45	Short-term consequences of nutritional depression on foraging behaviour of dark bush-crickets Pholidoptera griseoaptera (Orthoptera: Ensifera). European Journal of Entomology, 2006, 103, 249-253.	1.2	O
46	Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters, 2005, 8, 596-603.	6.4	173
47	The importance of antennae for pea aphid wing induction in the presence of natural enemies. Bulletin of Entomological Research, 2005, 95, 125-131.	1.0	31
48	The interplay between density- and trait-mediated effects in predator-prey interactions: a case study in aphid wing polymorphism. Oecologia, 2003, 135, 304-312.	2.0	84