Mercedes Zubiaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192216/publications.pdf

Version: 2024-02-01

47 papers

1,805 citations

304743 22 h-index 42 g-index

48 all docs

48 docs citations

times ranked

48

2492 citing authors

#	Article	IF	Citations
1	CD38 Deficiency Ameliorates Chronic Graft-Versus-Host Disease Murine Lupus via a B-Cell-Dependent Mechanism. Frontiers in Immunology, 2021, 12, 713697.	4.8	1
2	CD38 promotes pristane-induced chronic inflammation and increases susceptibility to experimental lupus by an apoptosis-driven and TRPM2-dependent mechanism. Scientific Reports, 2018, 8, 3357.	3.3	25
3	The Role of CD38 on the Function of Regulatory B Cells in a Murine Model of Lupus. International Journal of Molecular Sciences, 2018, 19, 2906.	4.1	13
4	Human canonical CD157/Bst1 is an alternatively spliced isoform masking a previously unidentified primate-specific exon included in a novel transcript. Scientific Reports, 2017, 7, 15923.	3.3	10
5	Increased expression of microRNAâ€155 in peripheral blood mononuclear cells from psoriasis patients is related to disease activity. Journal of the European Academy of Dermatology and Venereology, 2017, 31, 312-322.	2.4	25
6	Identification of multiple transferrin species in the spleen and serum from mice with collagen-induced arthritis which may reflect changes in transferrin glycosylation associated with disease activity: The role of CD38. Journal of Proteomics, 2016, 134, 127-137.	2.4	10
7	Supporting data for the MS identification of distinct transferrin glycopeptide glycoforms and citrullinated peptides associated with inflammation or autoimmunity. Data in Brief, 2016, 6, 587-602.	1.0	1
8	Tocilizumab as an Adjuvant Therapy for Hemophagocytic Lymphohistiocytosis Associated With Visceral Leishmaniasis. American Journal of Therapeutics, 2016, 23, e1193-e1196.	0.9	17
9	Distinct serum proteome profiles associated with collagenâ€induced arthritis and complete Freund's adjuvantâ€induced inflammation in <i>CD38^{â°/â°}</i> mice: The discriminative power of protein species or proteoforms. Proteomics, 2015, 15, 3382-3393.	2.2	6
10	Alteraciones en los niveles de expresión del microARN-33 en plasma de pacientes con psoriasis. Actas Dermo-sifiliográficas, 2014, 105, 497-503.	0.4	17
11	Circulating microRNA-33 and microRNA-126 in patients with psoriasis. Journal of the American Academy of Dermatology, 2014, 70, AB165.	1.2	1
12	Abnormal Levels of Expression of Plasma MicroRNA-33 in Patients With Psoriasis. Actas Dermo-sifiliogr \tilde{A}_i ficas, 2014, 105, 497-503.	0.4	13
13	Increased gene expression of Tollâ€like receptor 4 on peripheral blood mononuclear cells in patients with psoriasis. Journal of the European Academy of Dermatology and Venereology, 2013, 27, 242-250.	2.4	55
14	Disminución de los niveles plasmáticos de clusterina en pacientes con psoriasis. Actas Dermo-sifiliográficas, 2013, 104, 497-503.	0.4	7
15	Increased CD38 expression in T cells and circulating anti-CD38 IgG autoantibodies differentially correlate with distinct cytokine profiles and disease activity in systemic lupus erythematosus patients. Cytokine, 2013, 62, 232-243.	3.2	37
16	Decreased Plasma Levels of Clusterin in Patients With Psoriasis. Actas Dermo-sifiliográficas, 2013, 104, 497-503.	0.4	7
17	Altered AKT1 and MAPK1 Gene Expression on Peripheral Blood Mononuclear Cells and Correlation with T-Helper-Transcription Factors in Systemic Lupus Erythematosus Patients. Mediators of Inflammation, 2012, 2012, 1-14.	3.0	26
18	Atheroma plaque, metabolic syndrome and inflammation in patients with psoriasis. European Journal of Dermatology, 2012, 22, 337-344.	0.6	59

#	Article	IF	Citations
19	S100A9 and S100A8 gene expression levels in patients with psoriasis. Journal of the American Academy of Dermatology, 2012, 66, AB202.	1.2	О
20	Increased expression and phosphorylation of the two S100A9 isoforms in mononuclear cells from patients with systemic lupus erythematosus: A proteomic signature for circulating low-density granulocytes. Journal of Proteomics, 2012, 75, 1778-1791.	2.4	21
21	Mice Deficient in CD38 Develop an Attenuated Form of Collagen Type II-Induced Arthritis. PLoS ONE, 2012, 7, e33534.	2.5	36
22	A novel isoform of the Ly108 gene ameliorates murine lupus. Journal of Experimental Medicine, 2011, 208, 811-822.	8.5	59
23	Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70 and Lyn. Experimental Cell Research, 2010, 316, 2692-2706.	2.6	56
24	Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood, 2008, 111, 3653-3664.	1.4	74
25	The DC-SIGN–related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood, 2007, 109, 5337-5345.	1.4	87
26	Increased association of CD38 with lipid rafts in T cells from patients with systemic lupus erythematosus and in activated normal T cells. Molecular Immunology, 2006, 43, 1029-1039.	2.2	21
27	CD38 and CD157 as Receptors of the Immune System: A Bridge Between Innate and Adaptive Immunity. Molecular Medicine, 2006, 12, 334-341.	4.4	66
28	DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood, 2006, 107, 3950-3958.	1.4	216
29	Proteomic analysis of plasma from patients with systemic lupus erythematosus: Increased presence of haptoglobin $\hat{l}\pm 2$ polypeptide chains over the $\hat{l}\pm 1$ isoforms. Proteomics, 2006, 6, S282-S292.	2.2	51
30	CD38 Signaling in T Cells Is Initiated within a Subset of Membrane Rafts Containing Lck and the CD3-ζ Subunit of the T Cell Antigen Receptor. Journal of Biological Chemistry, 2003, 278, 50791-50802.	3.4	76
31	CD38 Is Associated with Lipid Rafts and upon Receptor Stimulation Leads to Akt/Protein Kinase B and Erk Activation in the Absence of the CD3-19 Immune Receptor Tyrosine-based Activation Motifs. Journal of Biological Chemistry, 2002, 277, 13-22.	3.4	99
32	Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Blood, 2002, 99, 2490-2498.	1.4	105
33	Phosphorylation of the N-Terminal and C-Terminal CD3-ϵ–ITAM Tyrosines Is Differentially Regulated in T Cells. Biochemical and Biophysical Research Communications, 2002, 291, 574-581.	2.1	9
34	Signaling through CD38 induces NK cell activation. International Immunology, 2001, 13, 397-409.	4.0	73
35	The CD3-Ĵ³ĴĴµ Transducing Module Mediates CD38-induced Protein-tyrosine Kinase and Mitogen-activated Protein Kinase Activation in Jurkat T Cells. Journal of Biological Chemistry, 1999, 274, 20633-20642.	3.4	35
36	CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB Journal, 1998, 12, 581-592.	0.5	90

#	Article	IF	CITATIONS
37	An octamer element functions as a regulatory element in the differentiation-responsive CD11c integrin gene promoter: OCT-2 inducibility during myelomonocytic differentiation. Journal of Immunology, 1997, 158, 5833-40.	0.8	16
38	CD38 ligation results in activation of the Raf-1/mitogen-activated protein kinase and the CD3-zeta/zeta-associated protein-70 signaling pathways in Jurkat T lymphocytes. Journal of Immunology, 1997, 159, 193-205.	0.8	58
39	A role for activated p21 ras in inhibition/regulation of platelet-derived growth factor (PDGF) type-beta receptor activation. Oncogene, 1996, 12, 1213-22.	5.9	7
40	A Small GTP-binding Protein, Rho, Associates with the Platelet-derived Growth Factor Type- \hat{l}^2 Receptor upon Ligand Binding. Journal of Biological Chemistry, 1995, 270, 17221-17228.	3.4	28
41	GO, a guanine nucleotide binding protein, is expressed during neurite extension in the embryonic mouse. Journal of Neuroscience Research, 1994, 38, 182-187.	2.9	13
42	Nerve growth factor changes G protein levels and localization in PC12 cells. Journal of Neuroscience Research, 1993, 35, 207-217.	2.9	27
43	Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7036-7040.	7.1	94
44	Expression of a G protein subunit, alpha i-1, in Balb/c 3T3 cells leads to agonist-specific changes in growth regulation Journal of Biological Chemistry, 1991, 266, 20276-20282.	3.4	22
45	Expression of a G protein subunit, alpha i-1, in Balb/c 3T3 cells leads to agonist-specific changes in growth regulation. Journal of Biological Chemistry, 1991, 266, 20276-82.	3.4	15
46	Corticosteroidogenesis modulation by β-endorphin and dynorphin1–17 in isolated rat adrenocortical cells. Peptides, 1986, 7, 237-240.	2.4	15
47	Renal Metabolism of Gut Glucagon-Like Immunoreactivity*. Endocrinology, 1982, 110, 2030-2036.	2.8	6