Jeffrey S Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019211/publications.pdf

Version: 2024-02-01

304743 345221 3,134 37 22 36 citations h-index g-index papers 43 43 43 3141 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature, 1985, 316, 446-449.	27.8	389
2	Nicotinamide Riboside Promotes Sir2 Silencing and Extends Lifespan via Nrk and Urh1/Pnp1/Meu1 Pathways to NAD+. Cell, 2007, 129, 473-484.	28.9	351
3	A Genetic Screen for Ribosomal DNA Silencing Defects Identifies Multiple DNA Replication and Chromatin-Modulating Factors. Molecular and Cellular Biology, 1999, 19, 3184-3197.	2.3	221
4	Calorie restriction extends the chronological lifespan of <i>SaccharomycesÂcerevisiae</i> independently of the Sirtuins. Aging Cell, 2007, 6, 649-662.	6.7	203
5	A Microarray-Based Genetic Screen for Yeast Chronological Aging Factors. PLoS Genetics, 2010, 6, e1000921.	3.5	198
6	Nicotinamide Clearance by Pnc1 Directly Regulates Sir2-Mediated Silencing and Longevity. Molecular and Cellular Biology, 2004, 24, 1301-1312.	2.3	179
7	Distribution of a Limited Sir2 Protein Pool Regulates the Strength of Yeast rDNA Silencing and Is Modulated by Sir4p. Genetics, 1998, 149, 1205-1219.	2.9	157
8	Human Sir2 and the â€~silencing' of p53 activity. Trends in Cell Biology, 2002, 12, 404-406.	7.9	137
9	RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO Journal, 2002, 21, 4959-4968.	7.8	123
10	The Nuts and Bolts of Transcriptionally Silent Chromatin in <i>Saccharomyces cerevisiae</i> Genetics, 2016, 203, 1563-1599.	2.9	120
11	Telomeric and rDNA Silencing in <i>Saccharomyces cerevisiae</i> Are Dependent on a Nuclear NAD+ Salvage Pathway. Genetics, 2002, 160, 877-889.	2.9	107
12	Yeast sirtuins and the regulation of aging. FEMS Yeast Research, 2014, 14, 73-88.	2.3	97
13	DNA Replication Stress Is a Determinant of Chronological Lifespan in Budding Yeast. PLoS ONE, 2007, 2, e748.	2.5	94
14	Diversity in the Sir2 family of protein deacetylases. Journal of Leukocyte Biology, 2004, 75, 939-950.	3.3	87
15	RNA Polymerase I Propagates Unidirectional Spreading of rDNA Silent Chromatin. Cell, 2002, 111, 1003-1014.	28.9	86
16	Distinguishing the Roles of Topoisomerases I and II in Relief of Transcription-Induced Torsional Stress in Yeast rRNA Genes. Molecular and Cellular Biology, 2011, 31, 482-494.	2.3	80
17	Thiamine Biosynthesis in <i>Saccharomyces cerevisiae</i> Is Regulated by the NAD ⁺ -Dependent Histone Deacetylase Hst1. Molecular and Cellular Biology, 2010, 30, 3329-3341.	2.3	64
18	Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biology, 2013, 14, R48.	9.6	53

#	Article	IF	Citations
19	Caloric Restriction Extends Yeast Chronological Life Span by Optimizing the Snf1 (AMPK) Signaling Pathway. Molecular and Cellular Biology, 2017, 37, .	2.3	49
20	Sir Antagonist 1 (San1) Is a Ubiquitin Ligase. Journal of Biological Chemistry, 2004, 279, 26830-26838.	3.4	47
21	Calorie restriction effects on silencing and recombination at the yeast rDNA. Aging Cell, 2009, 8, 633-642.	6.7	41
22	Genetic Identification of Factors That Modulate Ribosomal DNA Transcription in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 182, 105-119.	2.9	35
23	Pathogen Evasion of Chemokine Response Through Suppression of CXCL10. Frontiers in Cellular and Infection Microbiology, 2019, 9, 280.	3.9	33
24	Isonicotinamide Enhances Sir2 Protein-mediated Silencing and Longevity in Yeast by Raising Intracellular NAD+ Concentration. Journal of Biological Chemistry, 2012, 287, 20957-20966.	3.4	25
25	Limiting the Extent of the RDN1 Heterochromatin Domain by a Silencing Barrier and Sir2 Protein Levels in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2009, 29, 2889-2898.	2.3	23
26	Pnc1p-Mediated Nicotinamide Clearance Modifies the Epigenetic Properties of rDNA Silencing in <i>Saccharomyces cerevisiae </i> . Genetics, 2008, 180, 797-810.	2.9	22
27	Current status and prospects for development of a vaccine against Trichomonas vaginalis infections. Vaccine, 2014, 32, 1588-1594.	3.8	20
28	A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. Journal of Biological Chemistry, 2021, 296, 100125.	3.4	17
29	Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of <i>Saccharomyces cerevisiae</i> Cenetics, 2019, 212, 75-91.	2.9	14
30	Spontaneous mutations in CYC8 and MIG1 suppress the short chronological lifespan of budding yeast lacking SNF1/AMPK. Microbial Cell, 2018, 5, 233-248.	3.2	13
31	TRANSCRIPTION: Is S Phase Important for Transcriptional Silencing?. Science, 2001, 291, 608-609.	12.6	12
32	RNA Polymerase I and Fob1 contributions to transcriptional silencing at the yeast rDNA locus. Nucleic Acids Research, 2016, 44, 6173-6184.	14.5	10
33	Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations. Aging, 2015, 7, 177-194.	3.1	10
34	A Sir2-regulated locus control region in the recombination enhancer of Saccharomyces cerevisiae specifies chromosome III structure. PLoS Genetics, 2019, 15, e1008339.	3.5	8
35	Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors. PLoS ONE, 2018, 13, e0192179.	2.5	6
36	The long and short of rDNA and yeast replicative aging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2

ARTICLE IF CITATIONS

37 Sirtuin Function in Longevity., 2010, , 123-146. 0