Gabriel Olmos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10191764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Familial Psychosis Associated With a Missense Mutation at MACF1 Gene Combined With the Rare Duplications DUP3p26.3 and DUP16q23.3, Affecting the CNTN6 and CDH13 Genes. Frontiers in Genetics, 2021, 12, 622886.	2.3	3
2	Identification of Novel Genes Associated to Major Mental Disease by Whole Exome Sequencing in Families with High Prevalence. European Psychiatry, 2017, 41, S98-S99.	0.2	0
3	Disrupted in schizophrenia 1 (DISC1) is a constituent of the mammalian mitochondrial contact site and cristae organizing system (MICOS) complex, and is essential for oxidative phosphorylation. Human Molecular Genetics, 2016, 25, 4157-4169.	2.9	38
4	Tumor Necrosis Factor Alpha: A Link between Neuroinflammation and Excitotoxicity. Mediators of Inflammation, 2014, 2014, 1-12.	3.0	513
5	Mechanisms Involved in Spinal Cord Central Synapse Loss in a Mouse Model of Spinal Muscular Atrophy. Journal of Neuropathology and Experimental Neurology, 2014, 73, 519-535.	1.7	57
6	Neuroprotective Effects of Estradiol on Motoneurons in a Model of Rat Spinal Cord Embryonic Explants. Cellular and Molecular Neurobiology, 2013, 33, 421-432.	3.3	18
7	Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Therapy, 2013, 20, 645-657.	4.5	35
8	Notch Signaling Pathway Is Activated in Motoneurons of Spinal Muscular Atrophy. International Journal of Molecular Sciences, 2013, 14, 11424-11437.	4.1	14
9	Cellular and molecular mechanisms involved in the neuroprotective effects of VEGF on motoneurons. Frontiers in Cellular Neuroscience, 2013, 7, 181.	3.7	34
10	SMN deficiency attenuates migration of U87MG astroglioma cells through the activation of RhoA. Molecular and Cellular Neurosciences, 2012, 49, 282-289.	2.2	23
11	TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB. Molecular and Cellular Neurosciences, 2011, 46, 176-186.	2.2	83
12	Vascular endothelial growth factor protects motoneurons from serum deprivation–induced cell death through phosphatidylinositol 3-kinase-mediated p38 mitogen-activated protein kinase inhibition. Neuroscience, 2009, 158, 1348-1355.	2.3	43
13	Tumor necrosis factor alpha and interferon gamma cooperatively induce oxidative stress and motoneuron death in rat spinal cord embryonic explants. Neuroscience, 2009, 162, 959-971.	2.3	62
14	Vascular endothelial growth factor protects spinal cord motoneurons against glutamateâ€induced excitotoxicity via phosphatidylinositol 3â€kinase. Journal of Neurochemistry, 2008, 105, 1080-1090.	3.9	99
15	Complementary roles of tumor necrosis factor alpha and interferon gamma in inducible microglial nitric oxide generation. Journal of Neuroimmunology, 2008, 204, 101-109.	2.3	56
16	IFN-γ prevents TNF-α-induced apoptosis in C2C12 myotubes through down-regulation of TNF-R2 and increased NF-κB activity. Cellular Signalling, 2005, 17, 1333-1342.	3.6	47
17	μ-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology, 2003, 44, 482-492.	4.1	70
18	Activation of I2 -imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. British Journal of Pharmacology, 2000, 130, 146-152.	5.4	83

GABRIEL OLMOS

#	Article	IF	CITATIONS
19	Induction of reactive astrocytosis and prevention of motoneuron cell death by the I2 -imidazoline receptor ligand LSL 60101. British Journal of Pharmacology, 2000, 130, 1767-1776.	5.4	28
20	Pharmacologic and Molecular Discrimination of I2-Imidazoline Receptor Subtypesa. Annals of the New York Academy of Sciences, 1999, 881, 144-160.	3.8	23
21	Attenuation of Tolerance to Opioid-Induced Antinociception by Idazoxan and Other I2-Ligandsa. Annals of the New York Academy of Sciences, 1999, 881, 359-363.	3.8	12
22	Protection by Imidazol(ine) Compounds of l-Glutamate Neurotoxicity Through NMDA Receptor Blockade. Annals of the New York Academy of Sciences, 1999, 881, 452-452.	3.8	2
23	Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. British Journal of Pharmacology, 1999, 127, 1317-1326.	5.4	154
24	Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2 -imidazoline ligands. British Journal of Pharmacology, 1998, 125, 175-185.	5.4	81
25	Isothiocyanatobenzyl imidazoline is an alkylating agent for I2-imidazoline binding sites in rat and rabbit tissues. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 357, 351-355.	3.0	10
26	Inhibition of monoamine oxidase A and B activities by imidazol(ine)/guanidine drugs, nature of the interaction and distinction from I2 -imidazoline receptors in rat liver. British Journal of Pharmacology, 1997, 121, 901-912.	5.4	79
27	Labelling of I2B-imidazoline receptors by [3H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) in rat brain and liver: characterization, regulation and relation to monoamine oxidase enzymes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 39-47.	3.0	46
28	Pharmacological modulation of immunoreactive imidazoline receptor proteins in rat brain: relationship with nonâ€adrenoceptor [³ H]â€idazoxan binding sites. British Journal of Pharmacology, 1996, 118, 2029-2036.	5.4	35
29	Imidazoli(di)ne compounds interact with the phencyclidine site of NMDA receptors in the rat brain. European Journal of Pharmacology, 1996, 310, 273-276.	3.5	43
30	Pharmacological and molecular discrimination of brain I2-imidazoline receptor subtypes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 709-716.	3.0	15
31	LSL 60101, a selective ligand for imidazoline I2 receptors, on glial fibrillary acidic protein concentration. European Journal of Pharmacology, 1995, 280, 205-210.	3.5	33
32	l2-Imidazoline Receptors in the Healthy and Pathologic Human Brain. Annals of the New York Academy of Sciences, 1995, 763, 178-193.	3.8	10
33	Imidazolines Stimulate Release of Insulin from RIN-5AH Cells Independently from I1- and I2-Imidazoline Receptors. Annals of the New York Academy of Sciences, 1995, 763, 374-376.	3.8	3
34	Chronic Imidazoline Drug Treatment Increases the Immunoreactivity of Glial Fibrillary Acidic Protein in Rat Brain Annals of the New York Academy of Sciences, 1995, 763, 486-489.	3.8	2
35	Chronic Treatment with Phenelzine and Other Irreversible Monoamine Oxidase Inhibitors Downregulates I2-Imidazoline Receptors in the Brain and Liver. Annals of the New York Academy of Sciences, 1995, 763, 506-509.	3.8	4
36	The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver I ₂ imidazolineâ€preferring receptors. British Journal of Pharmacology, 1995, 114, 837-845.	5.4	54

GABRIEL OLMOS

#	Article	IF	CITATIONS
37	Endogenous substrates and functional role of eukaryotic mono(ADP-ribosyl)transferases. Biochemical Pharmacology, 1994, 48, 1669-1675.	4.4	4
38	Imidazolines stimulate release of insulin from RIN-5AH cells independently from imidazoline I1 and I2 receptors. European Journal of Pharmacology, 1994, 262, 41-48.	3.5	38
39	The effects of chronic imidazoline drug treatment on glial fibrillary acidic protein concentrations in rat brain. British Journal of Pharmacology, 1994, 111, 997-1002.	5.4	65
40	Differential Effects of the Alkylating Agent N-Ethoxycarbonyl-2-Ethoxy-1,2-Dihydroquinoline on Brain ?2-Adrenoceptors and I2-Imidazoline Sites In Vitro and In Vivo. Journal of Neurochemistry, 1993, 61, 1602-1610.	3.9	26
41	No effect of genetic obesity and mazindol on imidazoline I2 binding sites in the brain of Zucker rats. European Journal of Pharmacology, 1993, 243, 305-308.	3.5	2
42	Acute and chronic effects of cholinesterase inhibitors and pilocarpine on the density and sensitivity of central and peripheral α2-adrenoceptors. European Journal of Pharmacology, 1993, 236, 467-476.	3.5	5
43	Acute and chronic effects of reserpine on biochemical and functional parameters of central and peripheral α2-adrenoceptors. European Journal of Pharmacology, 1993, 239, 149-157.	3.5	16
44	Chronic treatment with the monoamine oxidase inhibitors clorgyline and pargyline downâ€regulates nonâ€adrenoceptor [³ H]â€idazoxan binding sites in the rat brain. British Journal of Pharmacology, 1993, 108, 597-603.	5.4	72
45	Discrimination and pharmacological characterization of I2-imidazoline sites with [3H]idazoxan and alpha-2 adrenoceptors with [3H]RX821002 (2-methoxy idazoxan) in the human and rat brains. Journal of Pharmacology and Experimental Therapeutics, 1993, 264, 1187-97.	2.5	102
46	Characterization of brain imidazoline receptors in normotensive and hypertensive rats: differential regulation by chronic imidazoline drug treatment. Journal of Pharmacology and Experimental Therapeutics, 1992, 260, 1000-7.	2.5	37
47	Decreased density and sensitivity of α2-adrenoceptors in the of spontaneously hypertensive rats. European Journal of Pharmacology, 1991, 205, 93-96.	3.5	21
48	Repeated Idazoxan Increases Brain Imidazoline Receptors in Normotensive (WKY) but Not in Hypertensive (SHR) Rats. Journal of Neurochemistry, 1991, 57, 1811-1813.	3.9	8
49	Ontogeny of binding sites for [3H]kainic acid in chick and rat cerebellar membranes: A comparative study. Neurochemical Research, 1990, 15, 47-52.	3.3	4
50	[3H]kainic acid binding sites in chick cerebellar membranes. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1989, 93, 321-325.	0.2	2
51	Sex differences in plasma membrane concanavalin A binding in the rat arcuate neurons. Brain Research Bulletin, 1989, 22, 651-655.	3.0	24
52	Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience, 1989, 32, 663-667.	2.3	197
53	Estradiol induces rapid remodelling of plasma membranes in developing rat cerebrocortical neurons in culture. Brain Research, 1989, 498, 339-343.	2.2	31
54	Neuronal membrane remodelling during the oestrus cycle: a freeze-fracture study in the arcuate nucleus of the rat hypothalamus. Journal of Neurocytology, 1988, 17, 377-383.	1.5	42

GABRIEL OLMOS

#	Article	IF	CITATIONS
55	The distribution of glial fibrillary acidic protein in the adult rat brain is influenced by the neonatal levels of sex steroids. Brain Research, 1988, 456, 357-363.	2.2	98
56	Sexual differentiation of the neuronal plasma membrane: Neonatal levels of sex steroids modulate the number of exo-endocytotic images in the developing rat arcuate neurons. Neuroscience Letters, 1988, 91, 19-23.	2.1	20
57	Postnatal development of glial fibrillary acidic protein immunoreactivity in the hamster arcuate nucleus. Developmental Brain Research, 1987, 37, 89-95.	1.7	30
58	Estrogen-induced synaptic remodelling in adult rat brain is accompanied by the reorganization of neuronal membranes. Brain Research, 1987, 425, 57-64.	2.2	53
59	Rapid effects of gonadal steroids upon hypothalamic neuronal membrane ultrastructure. The Journal of Steroid Biochemistry, 1987, 27, 615-623.	1.1	64
60	Estradiol — induced redistribution of glial fibrillary acidic protein immunoreactivity in the rat brain. Brain Research, 1987, 406, 348-351.	2.2	95
61	Nuclear pores in rat hypothalamic arcuate neurons: Sex differences and changes during the oestrous cycle. Journal of Neurocytology, 1987, 16, 469-475.	1.5	15