Luis G Carvajal-Carmona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019110/publications.pdf

Version: 2024-02-01

86 papers 8,197 citations

94269 37 h-index 71532 76 g-index

90 all docs 90 docs citations

90 times ranked 10969 citing authors

#	Article	IF	Citations
1	Diversifying preclinical research tools: expanding patient-derived models to address cancer health disparities. Trends in Cancer, 2022, 8, 291-294.	3.8	7
2	Cancer health disparities in racial/ethnic minorities in the United States. British Journal of Cancer, 2021, 124, 315-332.	2.9	447
3	The dual pandemic of COVIDâ€19 and systemic inequities in US Latino communities. Cancer, 2021, 127, 1548-1550.	2.0	28
4	Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nature Communications, 2021, 12, 5086.	5.8	58
5	A Polygenic Risk Score for Breast Cancer in US Latinas and Latin American Women. Journal of the National Cancer Institute, 2020, 112, 590-598.	3.0	53
6	Haplotype analysis of the internationally distributed BRCA1 c.3331_334delCAAG founder mutation reveals a common ancestral origin in Iberia. Breast Cancer Research, 2020, 22, 108.	2.2	9
7	The Genetic Population Structure of Robinson Crusoe Island, Chile. Frontiers in Genetics, 2020, 11, 669.	1.1	O
8	Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer Is Associated with Indigenous American Ancestry in Latin American Women. Cancer Research, 2020, 80, 1893-1901.	0.4	29
9	Molecular Subtypes and Driver Mutations in Latinos with Gastric Cancer: Implications for Etiological and Translational Research., 2020,, 89-94.		2
10	Editorial: Accomplishments, Collaborative Projects and Future Initiatives in Breast Cancer Genetic Predisposition. Frontiers in Oncology, 2019, 9, 841.	1.3	0
11	Racial/ethnic differences in survival among gastric cancer patients in california. Cancer Causes and Control, 2019, 30, 687-696.	0.8	17
12	Neuropathological Diagnoses of Demented Hispanic, Black, and Non-Hispanic White Decedents Seen at an Alzheimer's Disease Center. Journal of Alzheimer's Disease, 2019, 68, 145-158.	1.2	56
13	Identification of novel common breast cancer risk variants at the 6q25 locusÂamong Latinas. Breast Cancer Research, 2019, 21, 3.	2.2	32
14	Progress and future challenges in aging and diversity research in the United States. Alzheimer's and Dementia, 2019, 15, 995-1003.	0.4	77
15	BRAF and TERT mutations in papillary thyroid cancer patients of Latino ancestry. Endocrine Connections, 2019, 8, 1310-1317.	0.8	12
16	PALB2 as a familial gastric cancer gene: is the wait over?. The Lancet Gastroenterology and Hepatology, 2018, 3, 451-452.	3.7	10
17	Resolving gastric cancer aetiology: an update in genetic predisposition. The Lancet Gastroenterology and Hepatology, 2018, 3, 874-883.	3.7	73
18	Moving the needle on colorectal cancer genetics: it takes more than two to TANGO. British Journal of Cancer, 2018, 119, 913-914.	2.9	2

#	Article	IF	CITATIONS
19	Native American gene continuity to the modern admixed population from the Colombian Andes: Implication for biomedical, population and forensic studies. Forensic Science International: Genetics, 2018, 36, e1-e7.	1.6	13
20	Abstract 394: Elucidating tissue-specific effects of the 8q24 multicancer risk locus via CRISPR/Cas9 scarless genome editing. , 2018, , .		0
21	Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients With Gastric Cancer. Gastroenterology, 2017, 152, 983-986.e6.	0.6	98
22	Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance. Scientific Reports, 2017, 7, 15044.	1.6	8
23	Pathology and Molecular Pathology of Uterine and Ovarian Cancers. , 2017, , 247-278.		O
24	<i>BRCA1</i> and <ibrca2< i=""> founder mutations account for 78% of germline carriers among hereditary breast cancer families in Chile. Oncotarget, 2017, 8, 74233-74243.</ibrca2<>	0.8	33
25	Abstract 1445: Understanding the 8q24 colorectal cancer risk locus via CRISPR/Cas9 scarless genome editing. , 2017, , .		O
26	Abstract LB-158: Germline mutations inPALB2,BRCA1andRAD51Cobserved in gastric cancer cases. , 2017, , .		0
27	The Hunting of the Snark: Whither Genome-Wide Association Studies for Colorectal Cancer?. Gastroenterology, 2016, 150, 1528-1530.	0.6	4
28	Letter to the Editor: The HABP2 G534E Variant Is Unlikely to Be Implicated in the Risk of Familial or Sporadic Nonmedullary Thyroid Cancer. Clinical Thyroidology, 2016, 28, 52-54.	0.0	0
29	Clinical features of Hispanic thyroid cancer cases and the role of known genetic variants on disease risk. Medicine (United States), 2016, 95, e4148.	0.4	12
30	Clinical manifestations of colorectal cancer patients from a large multicenter study in Colombia. Medicine (United States), 2016, 95, e4883.	0.4	23
31	RE: HABP2 G534E Mutation in Familial Nonmedullary Thyroid Cancer. Journal of the National Cancer Institute, 2016, 108, djw108.	3.0	4
32	The HABP2 G534E polymorphism does not increase nonmedullary thyroid cancer risk in Hispanics. Endocrine Connections, 2016, 5, 123-127.	0.8	17
33	The HABP2 G534E Variant Is an Unlikely Cause of Familial Nonmedullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1098-1103.	1.8	32
34	CYP19A1 fine-mapping and Mendelian randomization: estradiol is causal for endometrial cancer. Endocrine-Related Cancer, 2016, 23, 77-91.	1.6	62
35	Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas. International Journal of Epidemiology, 2016, 45, 186-205.	0.9	21
36	Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Scientific Reports, 2015, 5, 17369.	1.6	35

#	Article	IF	Citations
37	Germline deletions in the tumour suppressor gene <i><scp>FOCAD</scp></i> are associated with polyposis and colorectal cancer development. Journal of Pathology, 2015, 236, 155-164.	2.1	28
38	Exome Sequencing in an Admixed Isolated Population Indicates NFXL1 Variants Confer a Risk for Specific Language Impairment. PLoS Genetics, 2015, 11, e1004925.	1.5	50
39	Candidate locus analysis of the TERT–CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk. Human Genetics, 2015, 134, 231-245.	1.8	34
40	Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Human Molecular Genetics, 2015, 24, 1478-1492.	1.4	50
41	Development and characterization of patient-derived xenografts to guide precision medicine in bladder cancer Journal of Clinical Oncology, 2015, 33, e15522-e15522.	0.8	О
42	Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nature Communications, 2014, 5, 5260.	5.8	123
43	Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42†103 individuals. Gut, 2013, 62, 871-881.	6.1	117
44	Much of the Genetic Risk of Colorectal Cancer Is Likely to Be Mediated Through Susceptibility to Adenomas. Gastroenterology, 2013, 144, 53-55.	0.6	41
45	Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nature Genetics, 2013, 45, 136-144.	9.4	851
46	BMP2 / BMP4 colorectal cancer susceptibility loci in northern and southern European populations. Carcinogenesis, 2013, 34, 314-318.	1.3	14
47	Germline Variants and Advanced Colorectal Adenomas: Adenoma Prevention with Celecoxib Trial Genome-wide Association Study. Clinical Cancer Research, 2013, 19, 6430-6437.	3.2	9
48	A colorectal cancer genome-wide association study in a Spanish cohort identifies two variants associated with colorectal cancer risk at 1p33 and 8p12. BMC Genomics, 2013, 14, 55.	1.2	36
49	Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24. Journal of Medical Genetics, 2012, 49, 158-163.	1.5	95
50	Refinement of the associations between risk of colorectal cancer and polymorphisms on chromosomes 1q41 and 12q13.13. Human Molecular Genetics, 2012, 21, 934-946.	1.4	19
51	Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nature Genetics, 2012, 44, 770-776.	9.4	210
52	Case-control study for colorectal cancer genetic susceptibility in EPICOLON: previously identified variants and mucins. BMC Cancer, 2011, 11, 339.	1.1	38
53	Novel MLH1 duplication identified in Colombian families with Lynch syndrome. Genetics in Medicine, 2011, 13, 155-160.	1.1	14
54	Fine-mapping of colorectal cancer susceptibility loci at 8q23.3, 16q22.1 and 19q13.11: refinement of association signals and use of in silico analysis to suggest functional variation and unexpected candidate target genes. Human Molecular Genetics, 2011, 20, 2879-2888.	1.4	56

#	Article	IF	CITATIONS
55	Multiple Common Susceptibility Variants near BMP Pathway Loci GREM1, BMP4, and BMP2 Explain Part of the Missing Heritability of Colorectal Cancer. PLoS Genetics, 2011, 7, e1002105.	1.5	188
56	Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature Genetics, 2010, 42, 973-977.	9.4	335
57	Comprehensive assessment of variation at the transforming growth factor \hat{l}^2 type 1 receptor locus and colorectal cancer predisposition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7858-7862.	3.3	26
58	Germline Epigenetic Silencing of the Tumor Suppressor Gene PTPRJ in Early-Onset Familial Colorectal Cancer. Gastroenterology, 2010, 139, 2221-2224.	0.6	46
59	Genetic dissection of intermediate phenotypes as a way to discover novel cancer susceptibility alleles. Current Opinion in Genetics and Development, 2010, 20, 308-314.	1.5	6
60	Challenges in the identification and use of rare disease-associated predisposition variants. Current Opinion in Genetics and Development, 2010, 20, 277-281.	1.5	25
61	Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies. PLoS ONE, 2010, 5, e10858.	1.1	28
62	Molecular Genetics of Familial Adenomatous Polyposis. , 2010, , 45-66.		2
63	Common variation at the adiponectin locus is not associated with colorectal cancer risk in the UK. Human Molecular Genetics, 2009, 18, 1889-1892.	1.4	31
64	Colorectal Cancer Risk Is Not Associated with Increased Levels of Homozygosity in a Population from the United Kingdom. Cancer Research, 2009, 69, 7422-7429.	0.4	36
65	The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nature Genetics, 2009, 41, 885-890.	9.4	463
66	Deciphering the genetics of hereditary non-syndromic colorectal cancer. European Journal of Human Genetics, 2008, 16, 1477-1486.	1.4	31
67	A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nature Genetics, 2008, 40, 623-630.	9.4	514
68	Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nature Genetics, 2008, 40, 631-637.	9.4	542
69	Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nature Genetics, 2008, 40, 26-28.	9.4	277
70	Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nature Genetics, 2008, 40, 1426-1435.	9.4	498
71	Refinement of the basis and impact of common $11q23.1$ variation to the risk of developing colorectal cancer. Human Molecular Genetics, 2008, 17, 3720-3727.	1.4	61
72	Homozygous PMS2 Deletion Causes a Severe Colorectal Cancer and Multiple Adenoma Phenotype Without Extraintestinal Cancer. Gastroenterology, 2007, 132, 527-530.	0.6	44

#	Article	IF	Citations
73	A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nature Genetics, 2007, 39, 1315-1317.	9.4	463
74	A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nature Genetics, 2007, 39, 984-988.	9.4	754
75	A family with juvenile polyposis linked to the BMPR1A locus: Cryptic mutation or closely linked gene?. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 2292-2297.	1.4	3
76	EPHB2 germline variants in patients with colorectal cancer or hyperplastic polyposis. BMC Cancer, 2006, 6, 145.	1.1	19
77	Evidence for a colorectal cancer susceptibility locus on chromosome 3q21-q24 from a high-density SNP genome-wide linkage scan. Human Molecular Genetics, 2006, 15, 2903-2910.	1.4	52
78	Adult Leydig Cell Tumors of the Testis Caused by Germline Fumarate Hydratase Mutations. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3071-3075.	1.8	113
79	Evidence of Linkage to Chromosome 9q22.33 in Colorectal Cancer Kindreds from the United Kingdom. Cancer Research, 2006, 66, 5003-5006.	0.4	51
80	Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene, 2005, 24, 3678-3683.	2.6	58
81	Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica. Human Genetics, 2003, 112, 534-541.	1.8	160
82	A novel Cys212Tyr founder mutation in parkin and allelic heterogeneity of juvenile Parkinsonism in a population from North West Colombia. Neuroscience Letters, 2001, 298, 87-90.	1.0	60
83	Strong Amerind/White Sex Bias and a Possible Sephardic Contribution among the Founders of a Population in Northwest Colombia. American Journal of Human Genetics, 2000, 67, 1287-1295.	2.6	157
84	An association study of bipolar mood disorder (type I) with the 5-HTTLPR serotonin transporter polymorphism in a human population isolate from Colombia. Neuroscience Letters, 2000, 292, 199-202.	1.0	78
85	Does a Multiple Myeloma Polygenic Risk Score Predict Overall Survival of Myeloma Patients?. Cancer Epidemiology Biomarkers and Prevention, 0, , .	1.1	2
86	A Cancer Health Needs Assessment Reveals Important Differences Between US-Born and Foreign-Born Latinos in California. Frontiers in Oncology, 0, 12, .	1.3	2