Karoline Faust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019106/publications.pdf

Version: 2024-02-01

59 papers 23,705 citations

35 h-index 61 g-index

70 all docs

70 docs citations

70 times ranked

28766 citing authors

#	Article	IF	Citations
1	Regime transition Shapes the Composition, Assembly Processes, and Co-occurrence Pattern of Bacterioplankton Community in a Large Eutrophic Freshwater Lake. Microbial Ecology, 2022, 84, 336-350.	2.8	4
2	Fast and flexible analysis of linked microbiome data with mako. Nature Methods, 2022, 19, 51-54.	19.0	7
3	The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114619119.	7.1	30
4	Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME Communications, 2022, 2, .	4.2	6
5	Quantifying the impact of ecological memory on the dynamics of interacting communities. PLoS Computational Biology, 2022, 18, e1009396.	3.2	9
6	Roles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics. Nature Microbiology, 2021, 6, 123-135.	13.3	47
7	Open challenges for microbial network construction and analysis. ISME Journal, 2021, 15, 3111-3118.	9.8	116
8	Null-model-based network comparison reveals core associations. ISME Communications, 2021, 1, .	4.2	9
9	Gut Microbiome Profiling Uncovers a Lower Abundance of Butyricicoccus in Advanced Stages of Chronic Kidney Disease. Journal of Personalized Medicine, 2021, 11, 1118.	2.5	11
10	Disentangling environmental effects in microbial association networks. Microbiome, 2021, 9, 232.	11.1	21
11	Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nature Communications, 2021, 12, 6740.	12.8	89
12	Successional Stages in Infant Gut Microbiota Maturation. MBio, 2021, 12, e0185721.	4.1	48
13	Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 2020, 8, 82.	11.1	239
14	manta: a Clustering Algorithm for Weighted Ecological Networks. MSystems, 2020, 5, .	3.8	7
15	Consumer Safety Considerations of Skin and Oral Microbiome Perturbation. Clinical Microbiology Reviews, 2019, 32, .	13.6	15
16	Synthetic ecology of the human gut microbiota. Nature Reviews Microbiology, 2019, 17, 754-763.	28.6	117
17	The Dynamic of a River Model Bacterial Community in Two Different Media Reveals a Divergent Succession and an Enhanced Growth of Most Strains Compared to Monocultures. Microbial Ecology, 2019, 78, 313-323.	2.8	3
18	Towards a Better Understanding of Microbial Community Dynamics through High-Throughput Cultivation and Data Integration. MSystems, 2019, 4, .	3.8	12

#	Article	IF	CITATIONS
19	Can we predict keystones?. Nature Reviews Microbiology, 2019, 17, 193-193.	28.6	58
20	Microbial Consortium Design Benefits from Metabolic Modeling. Trends in Biotechnology, 2019, 37, 123-125.	9.3	36
21	Gut microbiota dynamics and uraemic toxins: one size does not fit all. Gut, 2019, 68, 2257.1-2260.	12.1	37
22	Using metabolic networks to resolve ecological properties of microbiomes. Current Opinion in Systems Biology, 2018, 8, 73-80.	2.6	61
23	Structure of association networks in food bacterial communities. Food Microbiology, 2018, 73, 49-60.	4.2	22
24	Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations. PLoS ONE, 2018, 13, e0197462.	2.5	27
25	From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiology Reviews, 2018, 42, 761-780.	8.6	374
26	Microbial communities as dynamical systems. Current Opinion in Microbiology, 2018, 44, 41-49.	5.1	121
27	Genetic correlation network prediction of forest soil microbial functional organization. ISME Journal, 2018, 12, 2492-2505.	9.8	63
28	Signatures of ecological processes in microbial community time series. Microbiome, 2018, 6, 120.	11.1	81
29	Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. ELife, 2018, 7, .	6.0	62
30	Multi-stability and the origin of microbial community types. ISME Journal, 2017, 11, 2159-2166.	9.8	104
31	Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biology and Biochemistry, 2017, 105, 227-235.	8.8	72
32	Fire modifies the phylogenetic structure of soil bacterial coâ€occurrence networks. Environmental Microbiology, 2017, 19, 317-327.	3.8	48
33	Speciesâ€sorting and massâ€transfer paradigms control managed natural metacommunities. Environmental Microbiology, 2016, 18, 4862-4877.	3.8	31
34	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	12.6	1,716
35	Rules of the game for microbiota. Nature, 2016, 534, 182-183.	27.8	17
36	Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiology Reviews, 2016, 40, 686-700.	8.6	159

#	Article	IF	CITATIONS
37	Computational approaches to predict bacteriophage–host relationships. FEMS Microbiology Reviews, 2016, 40, 258-272.	8.6	394
38	A web application for sample size and power calculation in case-control microbiome studies. Bioinformatics, 2016, 32, 2038-2040.	4.1	57
39	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	9.8	593
40	CoNet app: inference of biological association networks using Cytoscape. F1000Research, 2016, 5, 1519.	1.6	398
41	CoNet app: inference of biological association networks using Cytoscape. F1000Research, 2016, 5, 1519.	1.6	331
42	Cross-biome comparison of microbial association networks. Frontiers in Microbiology, 2015, 6, 1200.	3.5	154
43	Soil microbiome responses to the shortâ€ŧerm effects of Amazonian deforestation. Molecular Ecology, 2015, 24, 2433-2448.	3.9	171
44	Determinants of community structure in the global plankton interactome. Science, 2015, 348, 1262073.	12.6	842
45	Metagenomics meets time series analysis: unraveling microbial community dynamics. Current Opinion in Microbiology, 2015, 25, 56-66.	5.1	345
46	Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME Journal, 2013, 7, 1678-1695.	9.8	185
47	Microbial Co-occurrence Relationships in the Human Microbiome. PLoS Computational Biology, 2012, 8, e1002606.	3.2	1,268
48	Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research, 2012, 22, 1974-1984.	5.5	120
49	Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486, 207-214.	27.8	9,614
50	A framework for human microbiome research. Nature, 2012, 486, 215-221.	27.8	2,249
51	Predicting Metabolic Pathways by Sub-network Extraction. Methods in Molecular Biology, 2012, 804, 107-130.	0.9	8
52	Microbial interactions: from networks to models. Nature Reviews Microbiology, 2012, 10, 538-550.	28.6	2,693
53	Prediction of metabolic pathways from genome-scale metabolic networks. BioSystems, 2011, 105, 109-121.	2.0	30
54	Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics, 2010, 26, 1211-1218.	4.1	74

KAROLINE FAUST

#	Article	lF	CITATIONS
55	In response to  Can sugars be produced from fatty acids? A test case for pathway analysis tools'. Bioinformatics, 2009, 25, 3202-3205.	4.1	9
56	Metabolic Pathfinding Using RPAIR Annotation. Journal of Molecular Biology, 2009, 388, 390-414.	4.2	57
57	Network Analysis Tools: from biological networks to clusters and pathways. Nature Protocols, 2008, 3, 1616-1629.	12.0	101
58	NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Research, 2008, 36, W444-W451.	14.5	81
59	New species of prunoid radiolarians from the Antarctic Neogene. Journal of Micropalaeontology, 2005, 24, 97-121.	3.6	32