Raymond Dingledine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Second-Generation Prostaglandin Receptor EP2 Antagonist, TG8-260, with High Potency, Selectivity, Oral Bioavailability, and Anti-Inflammatory Properties. ACS Pharmacology and Translational Science, 2022, 5, 118-133.	4.9	5
2	Pharmacological antagonism of EP2 receptor does not modify basal cardiovascular and respiratory function, blood cell counts, and bone morphology in animal models. Biomedicine and Pharmacotherapy, 2022, 147, 112646.	5.6	5
3	Time-dependent neuropathology in rats following organophosphate-induced status epilepticus. NeuroToxicology, 2022, 91, 45-59.	3.0	5
4	A Novel Second-Generation EP2 Receptor Antagonist Reduces Neuroinflammation and Gliosis After Status Epilepticus in Rats. Neurotherapeutics, 2021, 18, 1207-1225.	4.4	14
5	Seizures and memory impairment induced by patientâ€derived antiâ€Nâ€methylâ€Dâ€aspartate receptor antiboc in mice are attenuated by anakinra, an interleukinâ€1 receptor antagonist. Epilepsia, 2021, 62, 671-682.	lies 5.1	15
6	Comparison of neuropathology in rats following status epilepticus induced by diisopropylfluorophosphate and soman. NeuroToxicology, 2021, 83, 14-27.	3.0	14
7	Presynaptic Inhibitory Effects of Acetylcholine in the Hippocampus: A 40-Year Evolution of a Serendipitous Finding. Journal of Neuroscience, 2021, 41, 4550-4555.	3.6	1
8	Monoclonal Antibodies From Anti-NMDA Receptor Encephalitis Patient as a Tool to Study Autoimmune Seizures. Frontiers in Neuroscience, 2021, 15, 710650.	2.8	6
9	Peripheral Myeloid Cell EP2 Activation Contributes to the Deleterious Consequences of Status Epilepticus. Journal of Neuroscience, 2021, 41, 1105-1117.	3.6	20
10	Prostaglandin EP2 receptor antagonist ameliorates neuroinflammation in a two-hit mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2021, 18, 273.	7.2	2
11	A rat model of organophosphate-induced status epilepticus and the beneficial effects of EP2 receptor inhibition. Neurobiology of Disease, 2020, 133, 104399.	4.4	36
12	Potent, Selective, Water Soluble, Brain-Permeable EP2 Receptor Antagonist for Use in Central Nervous System Disease Models. Journal of Medicinal Chemistry, 2020, 63, 1032-1050.	6.4	21
13	Inhibition of the prostaglandin EP2 receptor prevents long-term cognitive impairment in a model of systemic inflammation. Brain, Behavior, & Immunity - Health, 2020, 8, 100132.	2.5	11
14	Urethane attenuates early neuropathology of diisopropylfluorophosphate-induced status epilepticus in rats. Neurobiology of Disease, 2020, 140, 104863.	4.4	8
15	An Agonist Dependent Allosteric Antagonist of Prostaglandin EP2 Receptors. ACS Chemical Neuroscience, 2020, 11, 1436-1446.	3.5	10
16	5xFAD Mice Display Sex-Dependent Inflammatory Gene Induction During the Prodromal Stage of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 70, 1259-1274.	2.6	30
17	Novel Microglia Cell Line Expressing the Human EP2 Receptor. ACS Chemical Neuroscience, 2019, 10, 4280-4292.	3.5	8
18	A mouse model of seizures in anti– <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptor encephalitis. Epilepsia, 2019, 60, 452-463.	5.1	46

RAYMOND DINGLEDINE

#	Article	IF	CITATIONS
19	Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology, 2019, 149, 149-160.	4.1	42
20	A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy. PLoS ONE, 2019, 14, e0226733.	2.5	12
21	The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opinion on Therapeutic Targets, 2019, 23, 1-13.	3.4	46
22	A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy. , 2019, 14, e0226733.		0
23	A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy. , 2019, 14, e0226733.		0
24	A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy. , 2019, 14, e0226733.		0
25	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	5.1	206
26	Discovery of 2-Piperidinyl Phenyl Benzamides and Trisubstituted Pyrimidines as Positive Allosteric Modulators of the Prostaglandin Receptor EP2. ACS Chemical Neuroscience, 2018, 9, 699-707.	3.5	18
27	Beneficial Outcome of Urethane Treatment Following Status Epilepticus in a Rat Organophosphorus Toxicity Model. ENeuro, 2018, 5, ENEURO.0070-18.2018.	1.9	25
28	Peripherally Restricted, Highly Potent, Selective, Aqueous-Soluble EP2 Antagonist with Anti-Inflammatory Properties. Molecular Pharmaceutics, 2018, 15, 5809-5817.	4.6	19
29	Why Is It so Hard to Do Good Science?. ENeuro, 2018, 5, ENEURO.0188-18.2018.	1.9	6
30	Ethylatropine Bromide as a Peripherally Restricted Muscarinic Antagonist. ACS Chemical Neuroscience, 2017, 8, 712-717.	3.5	7
31	Transcriptional profile of hippocampal dentate granule cells in four rat epilepsy models. Scientific Data, 2017, 4, 170061.	5.3	47
32	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	5.1	131
33	2014 Epilepsy Benchmarks Area III: Improve Treatment Options for Controlling Seizures and Epilepsy-Related Conditions without Side Effects. Epilepsy Currents, 2016, 16, 192-197.	0.8	10
34	2014 Epilepsy Benchmarks Area IV: Limit or Prevent Adverse Consequence of Seizures and Their Treatment across the Lifespan. Epilepsy Currents, 2016, 16, 198-205.	0.8	17
35	2014 Epilepsy Benchmarks Area I: Understanding the Causes of the Epilepsies and Epilepsy-Related Neurologic, Psychiatric, and Somatic Conditions. Epilepsy Currents, 2016, 16, 182-186.	0.8	9
36	2014 Epilepsy Benchmarks: Progress and Opportunities. Epilepsy Currents, 2016, 16, 179-181.	0.8	16

#	Article	IF	CITATIONS
37	2014 Epilepsy Benchmarks Area II: Prevent Epilepsy and Its Progression. Epilepsy Currents, 2016, 16, 187-191.	0.8	11
38	Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5665-74.	7.1	266
39	Inhibition of the prostaglandin E2 receptor EP2 prevents status epilepticus-induced deficits in the novel object recognition task in rats. Neuropharmacology, 2016, 110, 419-430.	4.1	65
40	The First 50 Years of Molecular Pharmacology. Molecular Pharmacology, 2015, 88, 139-140.	2.3	4
41	Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus. Neuropharmacology, 2015, 93, 15-27.	4.1	74
42	Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiology of Disease, 2015, 76, 126-136.	4.4	84
43	EP2 Receptor Signaling Regulates Microglia Death. Molecular Pharmacology, 2015, 88, 161-170.	2.3	38
44	Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application. Expert Review of Neurotherapeutics, 2015, 15, 1081-1092.	2.8	84
45	Candidate Drug Targets for Prevention or Modification of Epilepsy. Annual Review of Pharmacology and Toxicology, 2015, 55, 229-247.	9.4	71
46	When and How Do Seizures Kill Neurons, and Is Cell Death Relevant to Epileptogenesis?. Advances in Experimental Medicine and Biology, 2014, 813, 109-122.	1.6	160
47	The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus. Neurobiology of Disease, 2014, 70, 74-89.	4.4	31
48	Development of second generation EP2 antagonists with high selectivity. European Journal of Medicinal Chemistry, 2014, 82, 521-535.	5.5	29
49	Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3591-3596.	7.1	139
50	EP2 Receptor Signaling Pathways Regulate Classical Activation of Microglia. Journal of Biological Chemistry, 2013, 288, 9293-9302.	3.4	87
51	Reduction in delayed mortality and subtle improvement in retrograde memory performance in pilocarpineâ€treated mice with conditional neuronal deletion of cyclooxygenaseâ€2 gene. Epilepsia, 2012, 53, 1411-1420.	5.1	29
52	Glutamatergic mechanisms related to epilepsy: Ionotropic receptors. Epilepsia, 2010, 51, 15-15.	5.1	5
53	Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Experimental Neurology, 2003, 182, 21-34.	4.1	352
54	Peripheral Glutamate Receptors: Molecular Biology and Role in Taste Sensation. Journal of Nutrition, 2000, 130, 1039S-1042S.	2.9	31

#	Article	IF	CITATIONS
55	Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neuroscience, 1999, 2, 867-872.	14.8	360
56	GENETIC REGULATION OF GLUTAMATE RECEPTOR ION CHANNELS. Annual Review of Pharmacology and Toxicology, 1999, 39, 221-241.	9.4	98
57	Long-Term Depression in Hippocampal Interneurons: Joint Requirement for Pre- and Postsynaptic Events. Science, 1999, 285, 1411-1414.	12.6	144
58	Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nature Neuroscience, 1998, 1, 659-667.	14.8	193