
Kristiaan A M Wouters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunometabolism and the modulation of immune responses and host defense: A role for methylglyoxal?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166425.	3.8	5
2	Associations of cells from both innate and adaptive immunity with lower nerve conduction velocity: the Maastricht Study. BMJ Open Diabetes Research and Care, 2021, 9, e001698.	2.8	4
3	CERTL reduces C16 ceramide, amyloid-β levels, and inflammation in a model of Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 45.	6.2	16
4	Altered hepatic sphingolipid metabolism in insulin resistant mice: Role of advanced glycation endproducts. Free Radical Biology and Medicine, 2021, 169, 425-435.	2.9	12
5	High-throughput single cell data analysis – A tutorial. Analytica Chimica Acta, 2021, 1185, 338872.	5.4	1
6	Deletion of RAGE fails to prevent hepatosteatosis in obese mice due to impairment of other AGEs receptors and detoxifying systems. Scientific Reports, 2021, 11, 17373.	3.3	6
7	Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Research International, 2021, 147, 110547.	6.2	41
8	Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner. Journal of Autoimmunity, 2021, 124, 102723.	6.5	8
9	High-density lipoprotein cholesterol efflux capacity is not associated with atherosclerosis and prevalence of cardiovascular outcome: The CODAM study. Journal of Clinical Lipidology, 2020, 14, 122-132.e4.	1.5	19
10	NK cells in human visceral adipose tissue contribute to obesityâ€associated insulin resistance through Iowâ€grade inflammation. Clinical and Translational Medicine, 2020, 10, e192.	4.0	11
11	Multi-set Pre-processing of Multicolor Flow Cytometry Data. Scientific Reports, 2020, 10, 9716.	3.3	2
12	The endothelial function biomarker soluble Eâ€selectin is associated with nonalcoholic fatty liver disease. Liver International, 2020, 40, 1079-1088.	3.9	17
13	A mouse model of humanized liver shows a human-like lipid profile, but does not form atherosclerotic plaque after western type diet. Biochemical and Biophysical Research Communications, 2020, 524, 510-515.	2.1	9
14	CD11câ^'MHC2low Macrophages Are a New Inflammatory and Dynamic Subset in Murine Adipose Tissue. Immunometabolism, 2020, 2, e200015.	1.6	1
15	Partial Inhibition Of The Key Glycolytic Enzyme Pfkfb3 In Myeloid Cells Impacts Whole-Body Immune Cell And Liver Metabolism, But Not Atherogenesis Atherosclerosis, 2019, 287, e19-e20.	0.8	1
16	Adipose Tissue Macrophages Induce Hepatic Neutrophil Recruitment And Macrophage Accumulation Without Affecting Atherosclerosis Development In Mice Atherosclerosis, 2019, 287, e13.	0.8	0
17	Hepatic PPARÎ \pm is critical in the metabolic adaptation to sepsis. Journal of Hepatology, 2019, 70, 963-973.	3.7	53
18	A novel data fusion method for the effective analysis of multiple panels of flow cytometry data. Scientific Reports, 2019, 9, 6777.	3.3	10

#	Article	IF	CITATIONS
19	Hepatic Fat Content and Liver Enzymes Are Associated with Circulating Free and Protein-Bound Advanced Glycation End Products, Which Are Associated with Low-Grade Inflammation: The CODAM Study. Journal of Diabetes Research, 2019, 2019, 1-10.	2.3	10
20	Methylglyoxal-Derived Advanced Clycation Endproducts Accumulate in Multiple Sclerosis Lesions. Frontiers in Immunology, 2019, 10, 855.	4.8	30
21	Plant-based sterols and stanols in health & disease: "Consequences of human development in a plant-based environment?â€ŧ Progress in Lipid Research, 2019, 74, 87-102.	11.6	84
22	Adipose tissue macrophages do not affect atherosclerosis development in mice. Atherosclerosis, 2019, 281, 31-37.	0.8	6
23	Characterization of Immune Cells in Human Adipose Tissue by Using Flow Cytometry. Journal of Visualized Experiments, 2018, , .	0.3	6
24	Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Scientific Reports, 2018, 8, 4677.	3.3	160
25	Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice. Gut, 2018, 67, 1317-1327.	12.1	108
26	RAGE deficiency does not affect non-alcoholic steatohepatitis and atherosclerosis in Western type diet-fed Ldlrâ ''/â '' mice. Scientific Reports, 2018, 8, 15256.	3.3	20
27	Advanced Glycation Endproducts Are Increased in the Animal Model of Multiple Sclerosis but Cannot Be Reduced by Pyridoxamine Treatment or Glyoxalase 1 Overexpression. International Journal of Molecular Sciences, 2018, 19, 1311.	4.1	15
28	Abstract 388: High-density Lipoprotein Cholesterol Efflux Capacity is not associated with Atherosclerosis and Cardiovascular Events: the CODAM Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
29	Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue. Scientific Reports, 2017, 7, 42665.	3.3	75
30	Scavenger receptor collectin placenta 1 is a novel receptor involved in the uptake of myelin by phagocytes. Scientific Reports, 2017, 7, 44794.	3.3	30
31	The tumour suppressor CDKN2A/p16INK4a regulates adipogenesis and bone marrow-dependent development of perivascular adipose tissue. Diabetes and Vascular Disease Research, 2017, 14, 516-524.	2.0	16
32	Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice. Journal of Hepatology, 2017, 66, S600.	3.7	2
33	Macrophage complexity in human atherosclerosis: opportunities for treatment?. Current Opinion in Lipidology, 2017, 28, 419-426.	2.7	22
34	A novel 72-kDa leukocyte-derived osteoglycin enhances the activation of toll-like receptor 4 and exacerbates cardiac inflammation during viral myocarditis. Cellular and Molecular Life Sciences, 2017, 74, 1511-1525.	5.4	28
35	Methylglyoxal-Derived Advanced Glycation Endproducts in Multiple Sclerosis. International Journal of Molecular Sciences, 2017, 18, 421.	4.1	57
36	Cardiac Troponin T and I Release After a 30-km Run. American Journal of Cardiology, 2016, 118, 281-287.	1.6	33

#	Article	IF	CITATIONS
37	Deficiency of the oxygen sensor prolyl hydroxylase 1 attenuates hypercholesterolaemia, atherosclerosis, and hyperglycaemia. European Heart Journal, 2016, 37, 2993-2997.	2.2	40
38	Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet–Induced Obese Mice. Diabetes, 2016, 65, 956-966.	0.6	51
39	Ablation of CD8α+ dendritic cell mediated cross-presentation does not impact atherosclerosis in hyperlipidemic mice. Scientific Reports, 2015, 5, 15414.	3.3	19
40	Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs?. Trends in Endocrinology and Metabolism, 2015, 26, 176-184.	7.1	137
41	Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoEâ^'/â^' mice with or without diabetes. Cardiovascular Research, 2014, 104, 160-170.	3.8	19
42	Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. European Heart Journal, 2014, 35, 1137-1146.	2.2	138
43	Macrophage MicroRNA-155 Promotes Cardiac Hypertrophy and Failure. Circulation, 2013, 128, 1420-1432.	1.6	225
44	Activation of intestinal peroxisome proliferator-activated receptor-Â increases high-density lipoprotein production. European Heart Journal, 2013, 34, 2566-2574.	2.2	44
45	PS1 - 2. Role of the tumour suppressor CDKN2A/p16INK4a in the development of perivascular adipose tissue. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 133-134.	0.0	0
46	PS1 - 10. Obesity induces CD11c+ macrophages in murine adipose tissue which are distinctive from, but resemble, dendritic cells. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 148-149.	0.0	0
47	Human Adipose Tissue Macrophages Display Activation of Cancer-related Pathways. Journal of Biological Chemistry, 2012, 287, 21904-21913.	3.4	60
48	Roles of PPARs in NAFLD: Potential therapeutic targets. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 809-818.	2.4	229
49	LDL Receptor Knock-Out Mice Are a Physiological Model Particularly Vulnerable to Study the Onset of Inflammation in Non-Alcoholic Fatty Liver Disease. PLoS ONE, 2012, 7, e30668.	2.5	135
50	Bone Marrow p16INK4a-Deficiency Does Not Modulate Obesity, Glucose Homeostasis or Atherosclerosis Development. PLoS ONE, 2012, 7, e32440.	2.5	14
51	Internalization of Modified Lipids by CD36 and SR-A Leads to Hepatic Inflammation and Lysosomal Cholesterol Storage in Kupffer Cells. PLoS ONE, 2012, 7, e34378.	2.5	104
52	p16INK4a deficiency promotes IL-4–induced polarization and inhibits proinflammatory signaling in macrophages. Blood, 2011, 118, 2556-2566.	1.4	89
53	Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype. Diabetologia, 2011, 54, 3150-3156.	6.3	31
54	Peroxisome Proliferator–Activated Receptor-α Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1573-1579.	2.4	66

KRISTIAAN A M WOUTERS

#	Article	IF	CITATIONS
55	Intrahepatic cholesterol influences progression, inhibition and reversal of nonâ€alcoholic steatohepatitis in hyperlipidemic mice. FEBS Letters, 2010, 584, 1001-1005.	2.8	93
56	Role of Scavenger Receptor A and CD36 in Diet-Induced Nonalcoholic Steatohepatitis in Hyperlipidemic Mice. Gastroenterology, 2010, 138, 2477-2486.e3.	1.3	137
57	Modulating liver inflammation: a crucial role for cholesterol. Chemistry and Physics of Lipids, 2008, 154, S14.	3.2	0
58	Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology, 2008, 48, 474-486.	7.3	413
59	A central role for cholesterol metabolism and inflammation during the inhibition of non-alcoholic steatohepatitis with a synthetic PPARα agonist. Chemistry and Physics of Lipids, 2008, 154, S56.	3.2	0
60	Anticoagulant Effect of Dietary Fish Oil in Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2023-2029.	2.4	28
61	Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. Journal of Hepatology, 2006, 44, 732-741.	3.7	213
62	Parity-induced changes in global gene expression in the human mammary gland. European Journal of Cancer Prevention, 2005, 14, 129-137.	1.3	11
63	Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and Idlr mice. Clinical Chemistry and Laboratory Medicine, 2005, 43, 470-9.	2.3	125