Benjamin Damilano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018245/publications.pdf

Version: 2024-02-01

240 papers

4,980 citations

38 h-index 60 g-index

241 all docs

241 does citations

times ranked

241

3497 citing authors

#	Article	IF	CITATIONS
1	From visible to white light emission by GaN quantum dots on Si(111) substrate. Applied Physics Letters, 1999, 75, 962-964.	3.3	276
2	Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells. Journal of Applied Physics, 1999, 86, 3714-3720.	2.5	248
3	High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy. Applied Physics Letters, 2001, 78, 1252-1254.	3.3	208
4	Molecular Beam Epitaxy of Group-III Nitrides on Silicon Substrates: Growth, Properties and Device Applications. Physica Status Solidi A, 2001, 188, 501-510.	1.7	142
5	Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications, 2020, 11, 2651.	12.8	136
6	Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells. Japanese Journal of Applied Physics, 2001, 40, L918-L920.	1.5	120
7	Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth. Applied Physics Letters, 1999, 75, 3751-3753.	3.3	115
8	Radiative lifetime of a single electron-hole pair inGaNâ^•AlNquantum dots. Physical Review B, 2006, 73, .	3.2	106
9	Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy. Applied Physics Letters, 2013, 103, .	3.3	96
10	Atomic structure of pyramidal defects in Mg-doped GaN. Physical Review B, 2003, 68, .	3.2	79
11	Yellow–red emission from (Ga,ln)N heterostructures. Journal Physics D: Applied Physics, 2015, 48, 403001.	2.8	78
12	InGaN/GaN quantum wells grown by molecular-beam epitaxy emitting from blue to red at 300 K. Applied Physics Letters, 2000, 77, 1268-1270.	3.3	75
13	Influence of pressure on the optical properties of $\ln 3^2 \times 10^2 = 10^2 \times 10^2$	3.2	68
14	Large size dependence of exciton-longitudinal-optical-phonon coupling in nitride-based quantum wells and quantum boxes. Applied Physics Letters, 2002, 80, 428-430.	3.3	66
15			
10	Group-III nitride quantum heterostructures grown by molecular beam epitaxy. Journal of Physics Condensed Matter, 2001, 13, 6945-6960.	1.8	63
16		3.3	57
	Condensed Matter, 2001, 13, 6945-6960. GaN grown on Si(111) substrate: From two-dimensional growth to quantum well assessment. Applied		

#	Article	IF	Citations
19	Full InGaN red light emitting diodes. Journal of Applied Physics, 2020, 128, .	2.5	55
20	Intraband absorptions in GaN/AlN quantum dots in the wavelength range of 1.27–2.4 μm. Applied Physics Letters, 2003, 82, 868-870.	3.3	54
21	Bandwidth-unlimited polarization-maintaining metasurfaces. Science Advances, 2021, 7, .	10.3	52
22	Excitons in nitride heterostructures: From zero- to one-dimensional behavior. Physical Review B, 2013 , 88 , .	3.2	50
23	Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces. Nature Communications, 2021, 12, 3631.	12.8	50
24	Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication. Nano Letters, 2016, 16, 1863-1868.	9.1	48
25	High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy. Applied Physics Letters, 2003, 82, 499-501.	3.3	47
26	Blue-green and white color tuning of monolithic light emitting diodes. Journal of Applied Physics, 2010, 108, 073115.	2.5	47
27	Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission. Applied Physics Letters, 2015, 106, .	3.3	45
28	Demonstration of AlGaN/GaN High-Electron-Mobility Transistors Grown by Molecular Beam Epitaxy on Si(110). IEEE Electron Device Letters, 2008, 29, 1187-1189.	3.9	44
29	High doping level in Mg-doped GaN layers grown at low temperature. Journal of Applied Physics, 2008, 103, 013110.	2.5	44
30	Ultra-violet GaN/Al0.5Ga0.5N quantum dot based light emitting diodes. Journal of Crystal Growth, 2013, 363, 282-286.	1.5	44
31	Injection Dependence of the Electroluminescence Spectra of Phosphor Free GaN-Based White Light Emitting Diodes. Physica Status Solidi A, 2002, 192, 139-143.	1.7	43
32	Photoluminescence energy and linewidth in GaN/AlN stackings of quantum dot planes. Journal of Applied Physics, 2004, 96, 180-185.	2.5	43
33	Optical properties of GaN epilayers and GaN/AlGaN quantum wells grown by molecular beam epitaxy on GaN(0001) single crystal substrate. Journal of Applied Physics, 2000, 88, 183-187.	2.5	42
34	Comparison of the In distribution in InGaN/GaN quantum well structures grown by molecular beam epitaxy and metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2004, 262, 145-150.	1.5	42
35	Inhomogeneous broadening ofAlxGa1â^'xNâ^•GaNquantum wells. Physical Review B, 2005, 71, .	3.2	42
36	Blue-light emission from GaNâ^•Al0.5Ga0.5N quantum dots. Applied Physics Letters, 2008, 92, 051911.	3.3	40

#	Article	IF	Citations
37	Role of magnetic polarons in ferromagnetic GdN. Physical Review B, 2013, 87, .	3.2	40
38	Time dependence of the photoluminescence of GaN/AlN quantum dots under high photoexcitation. Physical Review B, 2003, 68, .	3.2	39
39	III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet. Applied Physics Letters, 2016, 109, .	3.3	38
40	An Etchingâ€Free Approach Toward Largeâ€Scale Lightâ€Emitting Metasurfaces. Advanced Optical Materials, 2019, 7, 1801271.	7.3	37
41	Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures. Applied Physics Letters, 2015, 107, .	3.3	36
42	Influence of high Mg doping on the microstructural and optoelectronic properties of GaN. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 224-228.	3.5	35
43	Surface kinetics of GaN evaporation and growth by molecular-beam epitaxy. Surface Science, 2000, 450, 191-203.	1.9	34
44	Submicron metal–semiconductor–metal ultraviolet detectors based on AlGaN grown on silicon: Results and simulation. Journal of Applied Physics, 2002, 92, 5602-5604.	2.5	34
45	xmins:mmi= http://www.w3.org/1998/Math/MathML display= inline > <mmi:mrow> <mmi:mi mathvariant="normal">In</mmi:mi> <mmi:mi mathvariant="normal">As</mmi:mi> <mmi:mo> â^•</mmi:mo> <mmi:mi mathvariant="normal">Ga</mmi:mi> <mmi:mi> <mmi:mo> <mmi:mo> <mmi:mi) 0.784314="" 0<="" 1="" etqq1="" rgbt="" td="" tj=""><td>3.2 Overlock 1</td><td>33 0 Tf 50 407</td></mmi:mi)></mmi:mo></mmi:mo></mmi:mi></mmi:mrow>	3.2 Overlock 1	33 0 Tf 50 407
46	Displacement Talbot lithography for nano-engineering of III-nitride materials. Microsystems and Nanoengineering, 2019, 5, 52.	7.0	33
47	Imaging and counting threading dislocations in c-oriented epitaxial GaN layers. Semiconductor Science and Technology, 2013, 28, 035006.	2.0	32
48	Blue Microlasers Integrated on a Photonic Platform on Silicon. ACS Photonics, 2018, 5, 3643-3648.	6.6	32
49	Tailoring the shape of GaN/AlxGa1â^xN nanostructures to extend their luminescence in the visible range. Journal of Applied Physics, 2009, 105, 033519.	2.5	30
50	Polar and semipolar GaN/Al _{0.5} Ga _{0.5} N nanostructures for UV light emitters. Semiconductor Science and Technology, 2014, 29, 084001.	2.0	30
51	Structural Defects and Relation with Optoelectronic Properties in Highly Mg-Doped GaN. Physica Status Solidi A, 2002, 192, 394-400.	1.7	29
52	MBE growth of ALGaN/GaN HEMTS on resistive Si(111) substrate with RF small signal and power performances. Journal of Crystal Growth, 2003, 251, 811-815.	1.5	29
53	Monolithic white light emitting diodes using a (Ga,In)N/GaN multiple quantum well light converter. Applied Physics Letters, 2008, 93, 101117.	3.3	29
54	Formation of GaN quantum dots by molecular beam epitaxy using NH3 as nitrogen source. Journal of Applied Physics, $2015,118,$	2.5	29

#	Article	IF	CITATIONS
55	GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range. Applied Surface Science, 2000, 164, 241-245.	6.1	28
56	Signature of GaN–AlN quantum dots by nonresonant Raman scattering. Applied Physics Letters, 2000, 77, 2174-2176.	3.3	25
57	Exciton dissociation and hole escape in the thermal photoluminescence quenching of(Ga,In)(N,As)quantum wells. Physical Review B, 2007, 75, .	3.2	25
58	Growth of GaN based structures on $Si(110)$ by molecular beam epitaxy. Journal of Crystal Growth, 2010, 312, 2683-2688.	1.5	25
59	Blue-shift mechanisms in annealed(Ga,In)(N,As)â^•GaAsquantum wells. Physical Review B, 2007, 75, .	3.2	24
60	First Power Performance Demonstration of Flexible AlGaN/GaN High Electron Mobility Transistor. IEEE Electron Device Letters, 2016, 37, 553-555.	3.9	24
61	Ge doped GaN and Al0.5Ga0.5N-based tunnel junctions on top of visible and UV light emitting diodes. Journal of Applied Physics, 2019, 126, .	2.5	24
62	Optical and structural characterization of self-organized stacked GaN/AlN quantum dots. Journal of Physics Condensed Matter, 2004, 16, S115-S126.	1.8	23
63	Long wavelength emitting InAsâ •Ga0.85In0.15NxAs1â x quantum dots on GaAs substrate. Applied Physics Letters, 2006, 88, 231902.	3.3	23
64	GaN/Al0.5Ga0.5N (11-22) semipolar nanostructures: A way to get high luminescence efficiency in the near ultraviolet range. Journal of Applied Physics, 2011, 110, .	2.5	23
65	GaN doped with beryllium—An effective light converter for white light emitting diodes. Applied Physics Letters, 2013, 103, .	3.3	23
66	Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction. Superlattices and Microstructures, 2017, 103, 245-251.	3.1	23
67	Blue (Ga,In)N/GaN Light Emitting Diodes on Si(110) Substrate. Applied Physics Express, 0, 1, 121101.	2.4	21
68	Top-down fabrication of GaN nano-laser arrays by displacement Talbot lithography and selective area sublimation. Applied Physics Express, 2019, 12, 045007.	2.4	21
69	Direct signature of strained GaN quantum dots by Raman scattering. Applied Physics Letters, 2001, 79, 686-688.	3.3	20
70	Microcrack-induced strain relief in GaNâ^•Al Nquantum dots grown on Si(111). Physical Review B, 2007, 75, .	3.2	20
71	III-nitride on silicon electrically injected microrings for nanophotonic circuits. Optics Express, 2019, 27, 11800.	3.4	20
72	Violet to Orange Room Temperature Luminescence from GaN Quantum Dots on Si(111) Substrates. Physica Status Solidi (B): Basic Research, 1999, 216, 451-455.	1.5	19

#	Article	IF	Citations
73	Printing polarization and phase at the optical diffraction limit: near- and far-field optical encryption. Nanophotonics, 2020, 10, 697-704.	6.0	19
74	Time-Resolved Spectroscopy of MBE-Grown InGaN/GaN Self-Formed Quantum Dots. Physica Status Solidi A, 2000, 180, 375-380.	1.7	18
75	Molecular beam epitaxy of ferromagnetic epitaxial GdN thin films. Journal of Crystal Growth, 2014, 404, 146-151.	1.5	18
76	Highly resistive epitaxial Mg-doped GdN thin films. Applied Physics Letters, 2015, 106, .	3.3	18
77	InGaN heterostructures grown by molecular beam epitaxy:. Journal of Crystal Growth, 2001, 227-228, 466-470.	1.5	17
78	Photo-induced droop in blue to red light emitting InGaN/GaN single quantum wells structures. Journal of Applied Physics, 2017, 122, .	2.5	17
79	Subliming GaN into Ordered Nanowire Arrays for Ultraviolet and Visible Nanophotonics. ACS Photonics, 2019, 6, 3321-3330.	6.6	17
80	Internal quantum efficiencies of AlGaN quantum dots grown by molecular beam epitaxy and emitting in the UVA to UVC ranges. Journal of Applied Physics, 2019, 126, .	2.5	17
81	Carrier Dynamics in Group-III Nitride Low-Dimensional Systems: Localization versus Quantum-Confined Stark Effect. Physica Status Solidi (B): Basic Research, 2001, 228, 65-72.	1.5	16
82	Blue Resonant Cavity Light Emitting Diodes with a High-Al-Content GaN/AlGaN Distributed Bragg Reflector. Japanese Journal of Applied Physics, 2003, 42, L1509-L1511.	1.5	16
83	Growth and in situ annealing conditions for long-wavelength (Ga, In)(N, As)/GaAs lasers. Applied Physics Letters, 2005, 86, 071105.	3.3	16
84	AlGaN-Based Light Emitting Diodes Using Self-Assembled GaN Quantum Dots for Ultraviolet Emission. Japanese Journal of Applied Physics, 2013, 52, 08JG01.	1.5	16
85	Strong Carrier Localization in GalnN/GaN Quantum Dots Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L1357-L1359.	1.5	15
86	The Effects of Localization and of Electric Fields on LO-Phonon-Exciton Coupling in InGaN/GaN Quantum Wells and Quantum Boxes. Physica Status Solidi A, 2002, 190, 149-154.	1.7	15
87	About some optical properties of AlxGa1â^'xN /GaN quantum wells grown by molecular beam epitaxy. Superlattices and Microstructures, 2004, 36, 659-674.	3.1	15
88	Impact of N on the lasing characteristics of GalnNAsâ^•GaAs quantum well lasers emitting from 1.29 to 1.52μm. Applied Physics Letters, 2005, 87, 251109.	3.3	15
89	Stark effect in ensembles of polar (0001) Al0.5Ga $0.5N/GaN$ quantum dots and comparison with semipolar ($11\hat{a}^2$ 2) ones. Journal of Applied Physics, 2014, 116, 034308.	2.5	15
90	Photoluminescence properties of porous GaN and (Ga,In)N/GaN single quantum well made by selective area sublimation. Optics Express, 2017, 25, 33243.	3.4	15

#	Article	IF	Citations
91	High Performance Solar Blind Detectors Based on AlGaN Grown by MBE on Si. Physica Status Solidi A, 2001, 188, 325-328.	1.7	14
92	Metal Organic Vapor Phase Epitaxy of Monolithic Two-Color Light-Emitting Diodes Using an InGaN-Based Light Converter. Applied Physics Express, 2013, 6, 092105.	2.4	14
93	Blue Light-Emitting Diodes Grown on ZnO Substrates. Applied Physics Express, 2013, 6, 042101.	2.4	14
94	Influence of the heterostructure design on the optical properties of GaN and Al0.1Ga0.9N quantum dots for ultraviolet emission. Journal of Applied Physics, 2017, 122, .	2.5	14
95	Analysis of low-threshold optically pumped III-nitride microdisk lasers. Applied Physics Letters, 2020, 117, .	3.3	14
96	GaN on Si(111): From Growth Optimization to Optical Properties of Quantum Well Structures. Physica Status Solidi (B): Basic Research, 1999, 216, 101-105.	1.5	13
97	Enhanced luminescence efficiency due to exciton localization in self-assembled InGaN/GaN quantum dots. Solid State Communications, 2000, 113, 495-498.	1.9	13
98	Optical Investigations and Absorption Coefficient Determination of InGaN/GaN Quantum Wells. Physica Status Solidi A, 2002, 190, 135-140.	1.7	13
99	Optimum indium composition for (Ga,In)(N,As)â^•GaAs quantum wells emitting beyond 1.5μm. Applied Physics Letters, 2006, 88, 091111.	3.3	13
100	AlGaN/GaN high electron mobility transistor grown by molecular beam epitaxy on Si(110): comparisons with Si(111) and Si(001). Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S1020.	0.8	13
101	Investigation of Al _y Ga _{1â^'} _y N/Al _{0.5} Ga _{0.5} N quantum dot properties for the design of ultraviolet emitters. Japanese Journal of Applied Physics, 2016, 55, 05FG06.	1.5	13
102	Ultraviolet light emitting diodes using III-N quantum dots. Materials Science in Semiconductor Processing, 2016, 55, 95-101.	4.0	13
103	Lasing up to 380 K in a sublimated GaN nanowire. Applied Physics Letters, 2020, 116, .	3.3	13
104	Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowires. ACS Nano, 2021, 15, 11385-11395.	14.6	13
105	Monolithic integration of ultraviolet microdisk lasers into photonic circuits in a lll-nitride-on-silicon platform. Optics Letters, 2020, 45, 4276.	3.3	13
106	Reduction of Carrier In-Plane Mobility in Group-III Nitride Based Quantum Wells: The Role of Internal Electric Fields. Physica Status Solidi A, 2001, 183, 61-66.	1.7	12
107	Performance improvement of 1.52â€[micro sign]m (Ga,In)(N,As)∕GaAs quantum well lasers on GaAs substrates. Electronics Letters, 2005, 41, 595.	1.0	12
108	Stress distribution of $12\hat{l}\frac{1}{4}$ m thick crack free continuous GaN on patterned Si(110) substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 425-428.	0.8	12

#	Article	IF	CITATIONS
109	Enhanced excitonic emission efficiency in porous GaN. Scientific Reports, 2018, 8, 15767.	3.3	12
110	Optoelectronic characterization of blue InGaN/GaN LEDS grown by MBE. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 256-258.	3.5	11
111	Surface morphology of AlN and size dispersion of GaN quantum dots. Journal of Crystal Growth, 2005, 274, 387-393.	1.5	11
112	Study of the growth mechanisms of GaN/(Al, Ga)N quantum dots: Correlation between structural and optical properties. Journal of Applied Physics, 2011, 109, 053514.	2.5	11
113	AlGaN/GaN HEMTs with an InGaN backâ€barrier grown by ammoniaâ€assisted molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 480-483.	1.8	11
114	Built-in electric field in ZnO based semipolar quantum wells grown on (101 \hat{A}^- 2) ZnO substrates. Applied Physics Letters, 2013, 103, .	3.3	11
115	Demonstration of critical coupling in an active III-nitride microdisk photonic circuit on silicon. Scientific Reports, 2019, 9, 18095.	3.3	11
116	Effects of Built-in Polarization Field on the Optical Properties of AlGaN/GaN Quantum Wells. Physica Status Solidi A, 1999, 176, 219-225.	1.7	10
117	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">Ga<mml:mi mathvariant="normal">N<mml:mo>a^•</mml:mo><mml:mi mathvariant="normal">Al<mml:mi< td=""><td>3.2</td><td>10</td></mml:mi<></mml:mi </mml:mi </mml:mi </mml:mrow>	3.2	10
118	mathyariant="normal">Ns/mmkmixs/mmkmrowss/mmkmrowss/mmkmathyariantum dots grown on Si(111). Physical Growth optimization and characterization of lattice-matched Al0.82In0.18N optical confinement layer for edge emitting nitride laser diodes. Journal of Crystal Growth, 2012, 338, 20-29.	1.5	10
119	Measurement of the effect of plasmon gas oscillation on the dielectric properties of p- and n-doped AlxGa1â^2xN films using infrared spectroscopy. Journal of Applied Physics, 2013, 114, 053505.	2.5	10
120	High temperature electrical transport study of Si-doped AlN. Superlattices and Microstructures, 2016, 98, 253-258.	3.1	10
121	Optical properties of InxGa1â^'xN/GaN quantum-disks obtained by selective area sublimation. Journal of Crystal Growth, 2017, 477, 262-266.	1.5	10
122	(Ga,In)N/GaN light emitting diodes with a tunnel junction and a rough n-contact layer grown by metalorganic chemical vapor deposition. AIP Advances, 2019, 9, 055101.	1.3	10
123	Effect of AlGaN interlayer on the GaN/InGaN/GaN/AlGaN multi-quantum wells structural properties toward red light emission. Journal of Applied Physics, 2020, 128, .	2.5	10
124	Improved Radiative Efficiency using Self-Formed GalnN/GaN Quantum Dots Grown by Molecular Beam Epitaxy. Physica Status Solidi A, 2000, 180, 363-368.	1.7	9
125	MBE grown InGaN quantum dots and quantum wells: effects of in-plane localization. Thin Solid Films, 2000, 380, 195-197.	1.8	9
126	(Ga,In)(N,As)-based solar cells grown by molecular beam epitaxy. IEE Proceedings: Optoelectronics, 2004, 151, 433-436.	0.8	9

#	Article	IF	CITATIONS
127	Signature of monolayer and bilayer fluctuations in the width of (Al,Ga)N/GaN quantum wells. Physical Review B, 2009, 79, .	3.2	9
128	Capping green emitting (Ga,In)N quantum wells with (Al,Ga)N: impact on structural and optical properties. Semiconductor Science and Technology, 2014, 29, 035016.	2.0	9
129	Growth of nitrideâ€based light emitting diodes with a highâ€reflectivity distributed Bragg reflector on mesaâ€patterned silicon substrate. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2297-2301.	1.8	9
130	Trapping Dipolar Exciton Fluids in GaN/(AlGa)N Nanostructures. Nano Letters, 2019, 19, 4911-4918.	9.1	9
131	Two-dimensional "pseudo-donor–acceptor-pairs―model of recombination dynamics in InGaN/GaN quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 64-67.	2.7	8
132	The universal photoluminescence behaviour of yellow light emitting (Ga,In)N/GaN heterostructures. Superlattices and Microstructures, 2014, 76, 9-15.	3.1	8
133	Monolithic white light emitting diodes with a broad emission spectrum. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 57-60.	0.8	7
134	Auger effect in yellow light emitters based on InGaN–AlGaN–GaN quantum wells. Japanese Journal of Applied Physics, 2016, 55, 05FG10.	1.5	7
135	Temperature-Induced Four-Fold-on-Six-Fold Symmetric Heteroepitaxy, Rocksalt SmN on Hexagonal AlN. Crystal Growth and Design, 2016, 16, 6454-6460.	3.0	7
136	UVA and UVB light emitting diodes with Al _{⟨i>y ⟨/sub>Ga_{1â~²⟨i>y ⟨/sub>N quantum dot active regions covering the 305–335 nm range. Semiconductor Science and Technology, 2018, 33, 075007.}}	2.0	7
137	Influence of the reactor environment on the selective area thermal etching of GaN nanohole arrays. Scientific Reports, 2020, 10, 5642.	3.3	7
138	Complexity of the dipolar exciton Mott transition in GaN/(AlGa)N nanostructures. Physical Review B, 2021, 103 , .	3.2	7
139	Revealing topological phase in Pancharatnam–Berry metasurfaces using mesoscopic electrodynamics. Nanophotonics, 2020, 9, 4711-4718.	6.0	7
140	Influence of surface roughness on the lasing characteristics of optically pumped thin-film GaN microdisks. Optics Letters, 2022, 47, 1521.	3.3	7
141	Nuclear Microprobe Analysis of GaN Based Light Emitting Diodes. Physica Status Solidi A, 2001, 188, 171-174.	1.7	6
142	Intraband spectroscopy of self-organized GaN/AlN quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 60-63.	2.7	6
143	Electronic and optical properties of GaN/AlN quantum dots on Si(111) subject to in-plane uniaxial stresses and variable excitation. Journal of Applied Physics, 2010, 108, 083510.	2.5	6
144	Impact of the Bending on the Electroluminescence of Flexible InGaN/GaN Light-Emitting Diodes. IEEE Photonics Technology Letters, 2016, 28, 1661-1664.	2.5	6

#	Article	IF	Citations
145	Optimized In composition and quantum well thickness for yellow-emitting (Ga,In)N/GaN multiple quantum wells. Journal of Crystal Growth, 2016, 434, 25-29.	1.5	6
146	GaN films and GaN/AlGaN quantum wells grown by plasma assisted molecular beam epitaxy using a high density radical source. Journal of Crystal Growth, 2016, 433, 165-171.	1.5	6
147	Photoluminescence properties of (Al,Ga)N nanostructures grown on Al0.5Ga0.5N (0001). Superlattices and Microstructures, 2018, 114, 161-168.	3.1	6
148	Mesoporous GaN Made by Selective Area Sublimation for Efficient Light Emission on Si Substrate. Physica Status Solidi (B): Basic Research, 2018, 255, 1700392.	1.5	6
149	AlGaN/GaN/AlGaN DHâ€HEMTs Grown on a Patterned Silicon Substrate. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700642.	1.8	6
150	Multi-microscopy nanoscale characterization of the doping profile in a hybrid Mg/Ge-doped tunnel junction. Nanotechnology, 2020, 31, 465706.	2.6	6
151	Whispering-gallery mode InGaN microdisks on GaN substrates. Optics Express, 2021, 29, 21280.	3.4	6
152	Photoluminescence Excitation Spectroscopy of MBE Grown InGaN Quantum Wells and Quantum Boxes. Physica Status Solidi (B): Basic Research, 2001, 228, 129-132.	1.5	5
153	Field distribution and collection efficiency in an AlGaN metal–semiconductor–metal detector. Journal of Applied Physics, 2002, 91, 6095-6098.	2.5	5
154	Steady-State and Time-Resolved Near-Field Optical Spectroscopy of GaN/AlN Quantum Dots and InGaN/GaN Quantum Wells. Physica Status Solidi A, 2002, 190, 155-160.	1.7	5
155	Light-ion beam for microelectronic applications. Nuclear Instruments & Methods in Physics Research B, 2005, 240, 265-270.	1.4	5
156	Polarized emission from GaN/AlN quantum dots subject to uniaxial thermal interfacial stresses. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C5E25-C5E34.	1.2	5
157	Polarized light from excitonic recombination in selectively etched GaN/AlN quantum dot ensembles on Si(111). Journal Physics D: Applied Physics, 2011, 44, 505101.	2.8	5
158	Color control in monolithic white light emitting diodes using a (Ga,In)N/GaN multiple quantum well light converter. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 465-468.	1.8	5
159	AlN interlayer to improve the epitaxial growth of SmN on GaN (0001). Journal of Crystal Growth, 2016, 450, 22-27.	1.5	5
160	High temperature electrical transport properties of MBE-grown Mg-doped GaN and AlGaN materials. Journal of Applied Physics, 2020, 128, .	2.5	5
161	Combination of selective area sublimation of p-GaN and regrowth of AlGaN for the co-integration of enhancement mode and depletion mode high electron mobility transistors. Solid-State Electronics, 2022, 188, 108210.	1.4	5
162	Porous Nitride Light-Emitting Diodes. ACS Photonics, 2022, 9, 1256-1263.	6.6	5

#	Article	IF	Citations
163	Photoluminescence properties of multiple stacked planes of GaN/AlN quantum dots studied by near-field optical microscopy. Journal of Microscopy, 2001, 202, 212-217.	1.8	4
164	InGaN/GaN quantum wells grown by molecular beam epitaxy emitting at 300 K in the whole visible spectrum. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 224-226.	3.5	4
165	Photoconductance measurements and Stokes shift in InGaN alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 197-199.	3.5	4
166	Near-Field Optical Spectroscopy of Multiple Stacked Planes of GaN/AlN Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 53-56.	1.5	4
167	Absorption and Emission of (In,Ga)N/GaN Quantum Wells Grown by Molecular Beam Epitaxy. Physica Status Solidi A, 2001, 183, 139-143.	1.7	4
168	Pyramidal defects in highly Mg-doped GaN:Âatomic structure and influence on optoelectronic properties. EPJ Applied Physics, 2004, 27, 259-262.	0.7	4
169	InAs/In0.15Ga0.85As1â^'xNx quantum dots for 1.5 Î $\frac{1}{4}$ m laser applications. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	4
170	Influence of carrier localization on the performance of MBE grown GalnNAs/GaAs QW light emitting diodes and laser diodes. , 2005, 5840, 81.		4
171	Room temperature performance of low threshold 1.34-1.44-/spl mu/m GalnNAs-GaAs quantum-well lasers grown by molecular beam epitaxy. IEEE Photonics Technology Letters, 2005, 17, 1142-1144.	2.5	4
172	Analysis of the characteristic temperatures of (Ga,In)(N,As)/GaAs laser diodes. Journal Physics D: Applied Physics, 2008, 41, 155102.	2.8	4
173	Infrared detectors based on InGaAsNâ^•GaAs intersubband transitions. Applied Physics Letters, 2009, 94, 022103.	3.3	4
174	Perturbing GaN/AlN quantum dots with uniaxial stressors. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1432-1435.	0.8	4
175	Selective control of polarized emission from patterned GaN/AlN quantum dot ensembles on Si(111). Applied Physics Letters, 2011, 98, 061903.	3.3	4
176	Optical and Thermal Performances of (Ga,In)N/GaN Light Emitting Diodes Transferred on a Flexible Tape. IEEE Photonics Technology Letters, 2018, 30, 1567-1570.	2.5	4
177	Pendeo-epitaxy of GaN on SOI nano-pillars: Freestanding and relaxed GaN platelets on silicon with a reduced dislocation density. Journal of Crystal Growth, 2019, 526, 125235.	1.5	4
178	Cathodoluminescence and electrical study of vertical GaN-on-GaN Schottky diodes with dislocation clusters. Journal of Crystal Growth, 2020, 552, 125911.	1.5	4
179	Mapping of the electrostatic potentials in MOCVD and hybrid GaN tunnel junctions for InGaN/GaN blue emitting light emitting diodes by off-axis electron holography correlated with structural, chemical, and optoelectronic characterization. Journal of Applied Physics, 2021, 130, .	2.5	4
180	Growth Kinetics of GaN in Ammonia Atmosphere. Physica Status Solidi A, 1999, 176, 333-336.	1.7	3

#	Article	IF	Citations
181	In K-edge extended X-ray absorption fine structure of InGaN epilayers and quantum boxes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 150-153.	3.5	3
182	Spectroscopy of the electron states in self-organized GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1 , $1456-1460$.	0.8	3
183	Annealing effects on InGaAsNâ^•GaAs quantum wells analyzed using thermally detected optical absorption and ten band kâ^²p calculations. Journal of Applied Physics, 2007, 101, 073510.	2.5	3
184	Current Spreading Efficiency and Fermi Level Pinning in GalnNAs–GaAs Quantum-Well Laser Diodes. IEEE Journal of Quantum Electronics, 2010, 46, 1058-1065.	1.9	3
185	Optical and Structural Properties of an Eu Implanted Gallium Nitride Quantum Dots/Aluminium Nitride Superlattice. Journal of Nanoscience and Nanotechnology, 2010, 10, 2473-2478.	0.9	3
186	Current transport through an nâ€doped, nearly lattice matched GaN/AlInN/GaN heterostructure. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 931-933.	0.8	3
187	The microstructure, local indium composition and photoluminescence in greenâ€emitting InGaN/GaN quantum wells. Journal of Microscopy, 2017, 268, 305-312.	1.8	3
188	Crack Statististics and Stress Analysis of Thick GaN on Patterned Silicon Substrate. Physica Status Solidi (B): Basic Research, 2018, 255, 1700399.	1.5	3
189	Internal quantum efficiency in polar and semipolar (11–22) InxGa1-xN/InyGa1-yN quantum wells emitting from blue to red. Superlattices and Microstructures, 2018, 113, 129-134.	3.1	3
190	InGaN islands and thin films grown on epitaxial graphene. Nanotechnology, 2020, 31, 405601.	2.6	3
191	Selective GaN sublimation and local area regrowth for co-integration of enhancement mode and depletion mode Al(Ga)N/GaN high electron mobility transistors. Semiconductor Science and Technology, 2021, 36, 024001.	2.0	3
192	Indium surface segregation in InGaN/GaN quantum wells., 0,,.		2
193	MBE growth of high quality AlGaN/GaN HEMTs on resistive Si[111] substrate with RF small signal and power performances. , 0 , , .		2
194	Contribution to quantitative measurement of the In composition in GaN/InGaN multilayers. Materials Chemistry and Physics, 2003, 81, 273-276.	4.0	2
195	Correlation between Internal Electric Fields, Residual Strain and Optical Transitions in GaN/AlN Stacked Quantum Dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 346-350.	0.8	2
196	Microcavity Light Emitting Diodes Based on GaN membranes Grown by Molecular Beam Epitaxy on Silicon. Japanese Journal of Applied Physics, 2003, 42, 118-121.	1.5	2
197	Optimization of InAs/(Ga,In)As quantum dots in view of efficient emission at 1.5 µm. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3979-3982.	0.8	2
198	Investigation of Non-Radiative Processes in InAs/(Ga,In)(N,As) Quantum Dots. Japanese Journal of Applied Physics, 2007, 46, L317-L319.	1.5	2

#	Article	IF	Citations
199	GaN/Al _{0.5} Ga _{0.5} N quantum dots and quantum dashes. Physica Status Solidi (B): Basic Research, 2009, 246, 842-845.	1.5	2
200	Optical properties and structural investigations of (11-22)-oriented GaN/Al0.5Ga0.5N quantum wells grown by molecular beam epitaxy. Journal of Applied Physics, 2015, 118, 024303.	2.5	2
201	High Temperature Annealing of MBE-grown Mg-doped GaN. Journal of Physics: Conference Series, 2017, 864, 012018.	0.4	2
202	Comparison of lasing characteristics of GaN microdisks with different structures. Journal Physics D: Applied Physics, 2022, 55, 355107.	2.8	2
203	Universal behavior of the pressure coefficient of the light absorption and emission in InGaN structures. Materials Research Society Symposia Proceedings, 2000, 639, 981.	0.1	1
204	Microscopic Description of Radiative Recombinations in InGaN/GaN Quantum Systems. Materials Research Society Symposia Proceedings, 2002, 743, L5.5.1.	0.1	1
205	Cathodoluminescence study of the excitons localization in AlGaN/GaN and InGaN/GaN quantum wells grown on sapphire. Journal of Crystal Growth, 2003, 247, 284-290.	1.5	1
206	Optical properties of GaN/AlN quantum boxes under high photo-excitation. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2666-2669.	0.8	1
207	AlGaN/GaN HEMTs on Resistive Si(111) Substrate: From Material Assessment to RF Power Performances. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 61-64.	0.8	1
208	Nontrivial carrier recombination dynamics and optical properties of over-excited GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2004, 241, 2779-2782.	1.5	1
209	Radiative lifetime in wurtzite GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 183-186.	0.8	1
210	Optimum annealing temperature versus nitrogen composition in InAs/(Ga, In) (N, As) quantum dots. Semiconductor Science and Technology, 2008, 23, 035020.	2.0	1
211	Electroluminescence analysis of 1.3-1.5 \hat{l} /4m InAs quantum dot LEDs with (Ga,In)(N,As) capping layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1424-1427.	0.8	1
212	Asymmetric barrier composition GaN/(Ga,In)N/(Al,Ga)N quantum wells for yellow emission. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2130-2132.	0.8	1
213	External efficiency and carrier loss mechanisms in InAs/GaInNAs quantum dot light-emitting diodes. Journal of Applied Physics, 2010, 108, 033104.	2.5	1
214	Excitation-dependent Polarized Emission from GaNâ^•AlN Quantum Dot Ensembles under In-plane Uniaxial Stresses. AIP Conference Proceedings, 2011, , .	0.4	1
215	Built-in electric field and radiative efficiency of polar (0001) and semipolar (11–22) Al[sub 0.5]Ga[sub 0.5]Nâ^•GaN quantum dots. , 2013, , .		1
216	AlGaN/GaN Nanostructures for UV Light Emitting Diodes. , 2014, , .		1

#	Article	IF	Citations
217	Growth of GaN nanostructures with polar and semipolar orientations for the fabrication of UV LEDs. , $2014, $, .		1
218	Monolithic white light emitting diodes using a (Ga,In)N-based light converter. , 2014, , .		1
219	Effect of the growth temperature and nitrogen precursor on the structural and electrical transport properties of SmN thin films. MRS Advances, 2017, 2, 165-171.	0.9	1
220	Epitaxial GdN/SmN-based superlattices grown by molecular beam epitaxy. MRS Advances, 2017, 2, 189-194.	0.9	1
221	Blue to yellow emission from (Ga,In)/GaN quantum wells grown on pixelated silicon substrate. Scientific Reports, 2020, 10, 18919.	3.3	1
222	Preferential sublimation along threading dislocations in InGaN/GaN single quantum well for improved photoluminescence. Journal of Applied Physics, 2022, 132, 035302.	2.5	1
223	Occurrence of â€~Accidental' inn Quantum Dots in Indium Gallium Nitride/Gallium Nitride Heterostructures. Materials Research Society Symposia Proceedings, 2002, 737, 195.	0.1	0
224	Spectroscopy of Intraband Electron Confinement in Self-Assembled GaN/AlN Quantum Dots. Materials Research Society Symposia Proceedings, 2003, 798, 575.	0.1	0
225	GaN/AlGaN multiple quantum wells grown on silicon substrates for UV light emitters. , 0, , .		0
226	(Ga,In)(N,As)/GaAs quantum wells grown by molecular beam epitaxy for above 1.3 $\hat{l}\frac{1}{4}$ m low threshold lasers. , 2005, , .		0
227	Analysis of the room temperature performance of 1.3-1.52 $\hat{l}\frac{1}{4}$ m GalnNAs/GaAs LDs grown by MBE. , 2005, 5840, 72.		0
228	1.5 Âμm luminescence from InAs/GaxIn1–xNyAs1–y quantum dots grown on GaAs substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3848-3851.	0.8	0
229	Control of polarized emission from selectively etched GaN/AlN quantum dot ensembles on Si(111). Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1011-1015.	0.8	0
230	GaN-based heterostructures grown on ZnO substrates: from polarity control to the fabrication of blue LEDs. , 2014 , , .		0
231	Optical properties of small GaN-Al0.5Ga0.5N quantum dots grown on (11-22) GaN templates. , 2015, , .		0
232	III-Nitride quantum dot based light emitting diodes for UV emission. , 2015, , .		0
233	Optical properties of Al0.5Ga0.5N/GaN polar quantum dots and UV LEDs made of them., 2015,,.		0
234	Photoluminescence behavior of amber light emitting GalnN-GaN heterostructures. Proceedings of SPIE, $2015, \ldots$	0.8	0

#	Article	IF	CITATIONS
235	Wetting-Layer-Free AlGaN Quantum Dots for Ultraviolet Emitters. ACS Applied Nano Materials, 2020, 3, 4054-4060.	5. 0	O
236	Semiconductors Meta-Optics: Fabrication and Applications. , 2019, , .		0
237	Towards III-nitride on silicon active photonic circuits. , 2019, , .		O
238	Les nouvelles diodes électroluminescentes pour l'émission UV. , 2022, , 16-21.	0.1	0
239	Light Polarization in Tunnel Junction Injected UV Lightâ€Emitting Diodes. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2200055.	1.8	O
240	Selective sublimation of GaN and regrowth of AlGaN to co-integrate enhancement mode and depletion mode high electron mobility transistors. Journal of Crystal Growth, 2022, , 126779.	1.5	0